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The electron-phonon coupling in conducting materials may produce at low
temperature either a charge density wave (CDW) or standard superconductivity (SC).
We analyse the limits of validity of these two kinds of theories which up to now are not
well-defined on the particular HOLSTEIN model ( where the non-interacting electrons
are described by a tight binding model and are coupled to a dispersionless optic mode
by on-site electron-phonon coupling). In the adiabatic limit (no quantum lattice
fluctuations), we prove rigorously ar any dimension that when the electron-phonon
coupling is large enough, the ground-state and the first excited states can be described
as a superlattice of bipolarons pinned to the lattice which forms the CDW. Then, the
low temperature thermodynamics of the electron-phonon system can be described by an
Ising spin Hamiltonian (lattice gas model). When the quantum lattice fluctuations are
taken into account, this Hamiltonian becomes a quantum model with spins 1/2. For
smaller electron-phonon coupling, we argue that the CDW with gapless phasons (or
FROHLICH modes usually considered in the litterature) are unstable against quantum
lattice fluciuations. A superconducting phase may then appear. The conjectured phase
diagram at OK thus involves either superconducting phase or pinned bipolaronic
structures (CDW).

1-Introduction

At low temperature, the electron-phonon coupling is known to be responsible of
very different physical phenomena in systems with conducting electrons, such as
standard Superconductivity (SC) and Charge Density Waves (CDW). The standard
theory of superconductivity (BCS)[1] assumes first that the electron-phonon coupling
which is treated as a perturbation, can be eliminated by a canonical transformation and
replaced by an effective attractive electron-electron interaction. Next, it is shown that
the collective pairing of electrons with opposite spins takes place and forms the BCS
superconducting state through an optimized variational form excluding other types of
instabilities. The quantum character of the phonons is essential in this theory because
the electron-electron attraction originates by the exchange of one or few quanta of
phonon energy only.

By contrast, the standard theories of CDWI2] neglect the quantum character of the
phonons. Then, it is shown that in some conditions which are favored by the low
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dimensionality of the systems, the energy cost due to a periodic lattice distortion which
raises the degeneracy of the electrons at the Fermi surface ("nesting") may become
negative. The system then exhibits a CDW associated to a periodic lattice distortion
(PLD).

These two theories are based on different assumptions which seems to be
incompatible. Thus, in order to get a better understanding of the competition between
CDW and SC, it is useful to first focus our attention on one of the simplest models
(Holstein model). We analyse the stability of the CDW structures against quantum
fluctuations of the lattice. The aim of this talk is to shed a new light on this problem
through a new approach based on previous works on incommensurate and chaotic

structures in PEIERLS modelsl4] which is currently under development.

2-Definition of the HOLSTEIN Hamiltonian

The Holstein Hamiltonian is the sum of three terms

H is the Hamiltonian of a single band of non-interacting electrons (within a tight
binding approximation)

+
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where T is the exchange constant between neighboring sites <i,j> on a
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are the creation and annihilation Fermions operators of an electron at site i with spin G

respectively. The band width is thus 4T d.
Hp is the Hamiltonian of quantum phonons corresponding to a dispersionless

optical branch
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where a; and a; are the creation and annihilation boson operators of phonons at site

i respectively. The on-site electron-phonon interaction with constant g is represented by
the Hamiltonian

+
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the electronic density operator at site i 1s
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In this model, two dimensionless independant parameters can be defined. They are:
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which measures the "quanturn character” of the phonons and
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~ which is the reduced electron-phonon coupling constant in the classical phonon
limit. By setting, the position operator

Vy
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and its conjugate operator (the commutator is [uj, p; ] =1)
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the initial Hamiltonian (1) becomes in unit of energy 2T:
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It is useful first, to analyse the limit cases y small (adiabatic limit) and vy large
(antiadiabatic limit) and next to try to understand the crossover between these two
limits.

3-Adiabatic Limit

For most real systems, the phonon energies with typical energies ﬁmo are of the

order of magnitude of several hundred degrees K. These energies are much smaller
than the typical band energies T by factors 100 or more.

The adiabatic limit is obtained by setting y=0 in (5). Standard theories of CDW use
this adiabatic approximation. As we shall see in the next, this approximation is different
of the Born-Oppenheimer approximation which takes partially the quantum lattice
fluctuations into account. Thus, the adiabatic solution may be qualitatively modified by

quantum lattice fluctuations even for very small values of 7.
For ¥=0, {uj} can be considered as scalar variables in (5) instead of being an

operator. Then, the creation operator of an electron in the eigenstates U and spin o is:
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where [‘}‘:l } fulfills the eigen equation
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depends on the variables {uj}. (The sum in (6-b) ¥ is done for the nearest

. ' : _ :<1,)>
neighbouring sites j of i). For the ground-state and the low-lying excitations of this
model, there are two electrons with opposite spins which occupy the eigenstates with

energy smaller than the Fermi energy EF' Then the energy (5) is a function ®({u;})) of
the scalar variables {u;}

(6-0) olu= 7 ¥ u2 + T E (i)

1 Ep<EF

The ground-state of the system is obtained by minimizing this variational form.
When this functional has many local minima with energy close to the energy of the
ground state, these states which are metastable, corresponds to the low-lying
excitations which determine the low-temperature behavior of the system. In one
dimension, this model has been studied and it has been shown that the ground-state
exhibits a Transition by Breaking of Analyticity (TBA).

4-The Transition by Breaking of Analyticity in One-dimensional Peierls Models

The ground-state of (6-c) exhibits a periodic lattice distortion (PLD) with wave-
vector 2k (kg is the Fermi wave-vector) associated with a CDW. When the electronic

band filling (number of electron pairs per site) is an irrational number , the CDW-PLD

state is degenerate with respect to the variation of its phase a. Then, it has been
observed that this model exhibits at zero K, a transition by breaking of analyticity
(TBA) as a function of the electron-phonon coupling constant k. This TBA was found
to be perfectly similar to those of the Frenkel-Kontorowa (FK) model (with the same
critical behavior). But, this last model has the advantage that the existence of the TBA
and of many of its characteristics can be analysed rigorously [4.9],

Let us briefly recall here, the main characteristic of the TBA in this Holstein model.

When k is smaller than some critical value kc({), the coordinates of the
incommensurate CDW-PLD ground-state depend analytically on the phase ("analytic
state"), and in addition this state is phase undefectible (or charge undefectible). This
means that there exists no local minima of (6-c) with the same band filling {, not

belonging to the family of incommensurate ground-states with arbitrary phase a. For
example, if one adds to the system a localized spinless pair of electrons, it cannot
remain localized in a metastable state and extends over the whole system. In that
regime, the CDW phonon excitations which correspond to phase fluctuation are gapless
and form the well-known phason branch.

(However, let us remark that taking into account the pair breaking of the electrons,
the CDW-PLD ground-state is spin-defectible, which means that that this state can

accept a localized defect with a spin ié— as in the well-known SSH model for

polyacethylene. But in that case, there is no chaotic states with spins when the system
is charge undefectible).



When k is larger than the critical value k¢(0), the coordinates of the incommensurate

CDW-PLD depend discontinuously on the phase ("non-analytic state"), and then this
state is phase defectible (or charge defectible). The functional energy (6-c) has

infinitely many metastable states (local minima) with the same band filling {, other than
the incommensurate ground-states. Most of these states are chaotic with a finite
entropy. In that situation, the ground-state accepts localized charge defects and these
configurational excitations are gapless while the phonon phase excitations have a finite
gap (unlike the "analytic" regime). In this regime, the CDW and its metastable states
can be interpreted as an incommensurate order of localized bipolarons and as glass of
bipolarons respectively. (We extend the concept of a bipolaron which is usually well
defined only when it is single). Then, it corresponds to a pair of electrons with
opposite spins localized in a potential well due to the lattice distortion created self-
consistently by the electron-phonon coupling. In section 6, we shall show that we can
still define explicitly the bipolaronic lattice distortion of a single bipolaron for a many
bipolarons system) .

Charge undefectibility characterizes experimentally the conducting materials while
charge defectibility characterizes the insulating materials. Thus the TBA is a metal-
insulator transition at zero degree K. More details about this transition were given in
refs.3,4 .

Standard theories of CDW assume implicitely that the CDW is always in the

conducting "analytic regime" (k<k¢({)). Up to now, our arguments for proving the
existence of a TBA in a CDW model which is in contradiction with these standard
theories, were essentially numerical and thus could be controversed. We can now
provide a theorem valid at any dimension for the adiabatic Holstein model, which gives
a rigorous fundation to this conjecture.

5- Bipolaronic States in the Adiabatic Holstein Model

When the electron-phonon coupling is large enough in the adiabatic Holstein model
at any dimension , we prove the following theorem:

Theorem (1989)(6]

Let us choose an arbitrary configuration of pseudo-spins {cn =0 ou 1} such that :
z O =T be the number of electron pairs of a finite system with s sites with for
n

example periodic boundary conditions (s is arbitrarily large and n € Z4d is a site of the
d dimensional square lattice). Then, for

(7-a) k>2+5d

there exists one and only one local minima {ug)of the functional energy (6-) of the
adiabatic Holstein model, such that

(7-b) up=-k Pp
where pp, is the electronic density of the CDW at site n and such that

1
(7-c) lpn-onl <7
These metastable states have the following properties.



1-The electronic eigenstates exhibits a finite gap in energy with a lower band
occupied and an upper band empty.

2- The phonon excitations exhibits a finite gap in frequency

3-The amplitude of a local perturbation at site n obtained for example by fixing an
atom i at a position different of its equilibrium position , decreases faster than a
exponential of the distance between site i and n.

The detailed proof of this theorem is too long for being described here and will be
given elsewhere 6], Let us just give the basic strategy which we used for proving this
theorem:

1-We define an non-linear operator Oin a Banach space for which the fixed points
are the extrema of the variational form (6-c)

2- For each pseudospin configuration, we associate a domain {0y }) by condition

(7-¢). When k is large enough, we prove that this domain 2X{0y}) is invariant by this
operator Oand

3 that the spectral norm of the linearized operator Vo is strictly smaller than 1
inside this domain..

Consequently, this operator contracts the metric distance in the domain so that the
Banach fixed point theorem (1921) can be applied. This theorem asserts the existence

of a unique fixed point inside each domain 2X (o)) which thus proves the main part of
the theorem.

Let us note that the same strategy applied to the FK model allows one to prove the
existence of chaotic states but in that case, the proof is much easier and shorter.
Extensions and variations of this theorem and of its methods of proof to other adiabatic
models and related results seem to be possible and are currently under study (but there
will be slight changes in the theorems, for example when the phonons are not
dispersionless).

. Let us discuss some physical implications of this theorem. In this specific Holstein

model, for any pseudo-spin configuration {op}, there exists a metastable state of the
variational energy form (6-c) such that the r maxima and the s-r minima of the associate

electronic density {pp) corresponds to the sites where op=1 and op=0 respectively.
All the occupied electronic states are below an energy gap while the unoccupied
electronic states are above. In other words, one can choose arbitrarily the location of
the peaks of the electronic density which physically means the location of the
bipolarons. More precisely, we can say that site n is occupied by a localized bipolaron

when the pseudospin Oy, is 1 and that this site n is empty when op=0. (However, it is
clear that the bipolarons are not strictly localized on single sites but extend more or less
around the occupied sites.)

Athough the bipolarons can be considered as localized in the real space (because one

can choose arbitrarily their location), the electronic eigenstates are not necessarily
localized. (Nevertheless, the proof of this theorem works whatever the electronic states

are). For example if the configuration of pseudo spins {op) is chosen periodic, the
electronic states are extended Bloch eigenstates. If this configuration is random, they
might be exponentially localized. In fact, in this model, the concept of localization of
the electrons is physically meaningless when the (undistinguishable) electrons are not
independant particles. The excitations of these metastable states are global excitations
of the whole system of electrons coupled with the phonons which thus involve self-



consistently the electronic density and the potential created by the lattice deformation. In

such a situation, the concept of defectibility replaces and generalizes the concept of

localization. Then, it is clear that these bipolaronic states are insulating at zero degree.
In the adiabatic approximation, the phonon frequencies wy, which correspond to

small motions of the atoms (which are assumed to have a unit mass) are determined by
the eigen equation

2 v _ N\ 2%0((ui) v
() ®v'¥y = Z Jupdug m
m

We have proven for this theorem, that the set of eigenvalues ma of the quadratic
form associated with the second order expansion of the adiabatic energy are strictly
larger than a finite positive value coé which implies the absence of a gapless phason

branch. In addition, the local perturbation created for example by an impurity at some
site n decays faster than an exponential far away from this impurity. In fact, numerical
studies in 1-d have shown that the decay is exponential and the corresponding

characteristic length is the coherence length &. (However & depends on k and on the

pseudospin configuration {Gq}).

Although we know that there exist many other metastable states involving atomic
distortions with smaller amplitudes, for large enough k, the ground-state presumably
belongs to the set of metastable states defined by this théorem, but for a special choice
of the pseudo-spins {Gp}. We have not proven this conjecture but we have numerical
evidence and a strong physical intuition that it should be true.

As for the FK modell7], for large enough electron phonon coupling k, these chaotic
states are those which are relevant for studying the thermodynamics of the system in
1,2 or 3 dimensions at low temperature. Since the configuration of the sytem are
represented by a pseudo-spin configuration, the initial Hamiltonian can be expanded
on this basis as a lattice gas model. This is the representation which has been also
found by Alexandrov et al (8] within a completely different approach. In ref [4], we

found the beginning of the expansion of this Hamiltonian as a function of ¢ In one-

dimension, this Hamiltonian has indeed an incommensurate ground-state with the
expected modulation wave-vector 2kg. But let us emphasize that for two or three

dimensional models, the ground-state which corresponds to a particular arrangement of
the bipolarons is unknown. They could interpret observed CDWs in 2-d systems.

As in the one dimensional model, when the electron-phonon coupling k becomes
smaller, it can reasonably be expected that the bipolaron size also diverges in d-
dimensional models at some critical value of k (which depends on the band filling)
Then all the metastable states disappear after complex cascades of inverse bifurcations
as for the FK model! . But unlike the 1-d adiabatic model which is always unstable
against a CDW-PLD, the adiabatic ground-state should present for smaller k another
transition to a state with no lattice distortion.



6- Effective Bipolaronic Shape in the Adiabatic 1-d Holstein Model

Since we have noted the similarity of the 1-d Holstein model and of the FK model, it
is tempting to check if the "decomposition theorem" obtained for the FK model applies
here. For the FK model, this theorem asserts that the "non-analytic" incommensurate
ground-states can be decomposed as a linear superposition of effective
discommensurations. The shape of these discommensurations is not those of a single
one but is effective because it depends on the presence of the other

discommensurations. The size of this discommensuration is the coherence length & and

diverges when k approach ke ({) from above. We found numerically the same result in

the adiabatic Holstein model (and hope to prove it rigorously). More precisely, the PLD
of the groundstate can be written as

(9-2) Up =- Z, i bn-j
i

with a sequence of pseudospins {oj} defined as
(9-b) oj =% (il+a)

where function % (x) has period 1, is equal to 1 for 0<x<{ and to zero for {<x<1. a
is the arbitrary phase. The sequence {b;] is shown for two examples, figure 1. This
result suggests that the bipolaron are well-defined objects at least for the "non-analytic”

incommensurate ground-states and its excited states. It size diverges at ko(0) and it
does not exist below k({) when the ground-state is incommensurate and "analytic"”.
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Figure 1: Bipolaron shape (bi} versus i inthe I-d adiabatic Holstein model for

&= @ for k=1.58=kc({) (left) and k=1.7 (right). This bipolaron is well

localized far above the TBA and diverges when approaching k¢(C) from above. It is
undefined for k <kc(Q).



Let us now examine, the effect of quantum lattice fluctuations on the adiabatic
solutions.

7- Quantum lattice fluctuations for small ¥

The Born-Oppenheimer approximation consists of quantizing the atomic motion in
the adiabatic potential with the Hamiltonian

2
(10-2) H= 3’&— Z %piz +@({uj))
i

Within this approximation, the electrons are always in adiabatic equilibrium with the
atomic configuration. Clearly, they cannot order by themselves into a superconducting
order. The global wave function of the system has the form

(10-b) ¥ = i) ] ¢* (i) Ivacuum>
L occ,0

where C'L 0({ui]) is defined by (6-a) and (6-b). In fact, this approximation is in

general very hard to handle explicitly because the adiabatic energy ®({uj}) is a highly
non-linear functional as suggested by the above theorem. In practice, one can use

quadratic expansions around the local minima of ®({u;}).

When the bipolaronic structure is "non-analytic" (large k), we can perform a more
suitable approach. The adiabatic states are represented as coherent states

+

(11-2) lwi}>= M cyp M ¢y

L occ 1L occ

X exp E \u(—l_ ( a+i - ;) | vacuum >
. Y

1

which consists of creating the PLD onto the vacuum by application of an appropriate
distortion operator together with the electrons in the adiabatic state. Since there are
many metastable states, one can calculate the overlaps between them. One find after

some calculations, the exact overlaps between two arbitrary adiabatic states [ {ui} >
and | {u'j} > which are

=1

= S
(11-b) <{u'j) | {uj} > = (dctﬁ)2 eXp { 21— Z (uj - u'i)2 } and
'Y T

(11-¢) <{u'{} | FI | (uj}) > =

" 's 3
{S +¢({u1}>+2®({ud) By (u'i-ui)z} <{ui} | (v} >
i=1
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(det A is the determinant of the r X r matrix A= (A P»"ll) defined as
' 1ok
(11-d) A= <wHlvH> = z vi v
i

where | w“> and | \p'“ > are the occupied electronic states given by (6-b) for the
adiabatic state | {u;} > and | {u';) > respectively.

For k>> k(£) and small ¥, it is easy to check that these adiabatic states | {uj}) > are

orthogonal one with each other because of the exponential in (11-b). For example, for
two adiabatic states which differs only by the location of a bipolaron, one easily find
the estimation

k2
(12) <{u'j) | () >=cxp(--;-).

For other adiabatic states which differs by the location of more and more
pseudospins, the overlap becomes smaller and smaller. To fix the ideas, k=2 and
g=}0‘2 yields an overlap of ¢-400 which clearly is physically neglegible. Clearly, the
adiabatic metastable configurations are practically unaffected by the existence of small
quantumn lattice fluctuations.

When k approach k¢({) from above, we noted that the bipolaronic size diverges,
which implies that the overlap between close adiabatic states goes to 1.More precisely,

E
the overlap calculated in (12) becomes roughly proportional to exp( - -B-\I-) where
Y

Epy is the Peierls-Nabarro energy barrier that the height of the barrier which has to be

overcome for moving a bipolaron of one lattice site. This feature is a proof that the

above quantized adiabatic states (11-a) becomes very bad quantum states at the TBA.
In the bipolaronic regime k>kc(L), one can consider the quantum lattice fluctuations

as a correction to the lattice gas Hamiltonian of bipolarons. The extra terms appears as
transverse spin Operators which allows the tunnelling of bipolarons from one occupied
site to an empty site. Setting

(S
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the spin Hamiltonian expands with the general form
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Thus for small y, one can explicitly calculate the first terms of this expansion (see
ref.4). At the lowest order, one finds again the same Hamiltonian as obtained by
ALEXANDROV et al 1986 for describing bipolaronic superconductivity in this specific
model. In their representation, superconductivity is obtained if the average of the

transverse component <S’i(> is non zero. However close to the adiabatic limit and the

quantum terms in (13-b) which fulfills(4]

4 EpN

(13-c) I5.j = Ji-j exp( - )

k2
= Ji-j exp(-—) for large k,
Y

are negligible unless k becomes close above to kq(C) so that EpN—0. Then the
bipolaronic model collapses because due to the divergence of the bipolaron size, the
series in (13-b) tends to diverge.

Among the arguments which we developped in ref.6 for proving the unstability of

"analytic" CDW under quantum lattice fluctuations, we suggested that for k<k(C),
when the phase fluctuations of the incommensurate "analytic" CDW extends over a
large enough distance (which is about the size of a Cooper pair!), then it gains more
energy by quantum tunnelling than it looses by the elastic deformation.

We are currently performing more sophisticated expansions with respect to the

quantum parameter Y. At the present stage of our work, all attempts confirm that the
adiabatic "analytic" CDW are far from a good quantum state of the Hamiltonian.
Although, we have no rigorous proof, our present conjecture remains that the existence
of a gapless phason branch for a CDW structure makes this structure unstable with

respect to quantum lattice fluctuation whatever y is small (but non zero)!
On the other hand, as we demonstrate above, bipolaronic states should remain stable

providing that the quantum parameter be not too large y<<k2.

8- The antiadiabatic limit }‘10)0 >>T

This regime is physically unusual but is plausible when the electrons are not coupled
to phonons but to other excitations of the solid with much higher energies (plasmons,
excitons?). In that regime, the Lang-Firsov unitary transformation exp(iS|_F) (e.g. see

ref. 8) transforms the Hamiltonian (1) into

(14-a) H= exp(iS_F)H exp(-iS_F)
with
(14-b) iSLF = ﬁo_ 2 (2 ¢igCq) (8-

One obtains



A 4 i 1
_emn E e . ) }: + 2
(14-c) H=T( HjCiate ~ % k (2 00 )
o

L1, O

1

+72(atai+1§) ]
1

where
A 1 k 2 i
(14-d) tiJ’“P(j_‘—"‘ ((ai-ai)-(a.-a.))
v ] J)
When
(15-a) k2<<~y

or equivalently g <<hay (this is the regime opposite to the regime of stability of the
bipolaronic su'ucrugcs against quantum fluctuations)

(15-b) 4y = 1

Then, one obtain an Hamiltonian where the electrons and the phonons exactly
decouple. An electron-electron interaction is left which is on-site with the coefficient

2
(15-c) %— =-U
This situation allows one to try the standard BCS form for superconductivity
+ +
(16-a) 1;[ (ug +vq ¢ q,T c -q,i) | vacuum>

+ . . . ;
where cq is now the creation operator of an delocalized electron with wave vector q

and spin T. The modulation u(q) and v(q) now is in the reciprocal space. This
specificity allows the existence of quantum states (under magnetic field) of the whole
system with a permanent current and thus of superconductivity.

(16-b) H (uq + Vg C+q+8aT qu+6,l ) | vacuum >
q
NOZIERES et SCHMITT-RINK(10] have studied this negative U Hubbard model.

9-Conclusion:

As we suggested above, the "analytic” incommensurate CDW should be unstable
with respect to quantum lattice fluctuations. Thus, we conjecture that the phase diagram
at zero degree K of the Holstein model should be shared into two main regions
according to the role of the quantum lattice fluctuations (cf. fig. 2):



1- The bipolaronic region which starts from the adiabatic line y=0 and from the
critical point of the TBA when the band filling { is irrational. In that region, sufficiently

far away from the critical line (according to (13-c) and (15-a), y=4EpN= k2 for large
k), the quantum lattice fluctuations have a small effect . (For the commensurate band
filling, this line may reach the origin but should converge to the incommensurate line in
the limit of high order commensurability.)

2- The superconducting region in the remainding part of the phase diagram, where
the quantum lattice fluctuations always prevent the formation of a structure in real
space.

It can be reasonably expected for models in more than 1 dimension, that there exist
many other critical lines (perhaps infinitely many) inside the bipolaronic region which
determine regions with different bipolaronic arrangements. In addition,
superconductivity should behave very differently depending on the region of the phase

diagram where it is supposed to exist (e.g. close to the adiabatic line for irrational {
opposed to the region with both large k and >>k2).

XA

Superconductivity?

Bipolaronic State

i k >

k(¢)

Figure 2 Scheme of the conjectured phase diagram ink and v of the Holstein model at zero
degree K. A line separates the bipolaronic states from the superconducting region . For large

k, this line follows approximately '}’——-kz but depends on the band filling for small k. For
irrational band filling, it should reach (with an exponent?) the k axis at k().
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