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4.1 Tight binding in the one-dimensional atomic chain

Figure 4.1: Atomic chain

Let’s consider a chain of N >> 1 identical atoms separated by a distance a. Let’s assume
that each atom n has only one electronic orbital �n(r) (labeled by its ket |�ni) which form a
complete orthonormal basis. On this basis set the only matrix elements of the Hamiltonian
are:

(
h�m |H|�m+1i = h�m+1 |H|�mi = �t

h�m |H|�mi = "0

where t > 0 denotes the amplitude of an electron hopping between adjacent orbitals. The
electron wavefunction can be then decomposed on the atomic orbital basis:

| i =
X

m

cm |�mi

1. Find the relation between the coefficients cm for a given Bloch wavevector k. (Hint: use
the translational invariance of the atomic orbitals and the Bloch theorem).

2. Write down the eigenvalue equation and determine the “electronic dispersion” "k. Sketch
"k in the first Brillouin zone. What’s the bandwidth? Mark it on the drawing.

3. Find the effective mass of the electrons at the band bottom, close to k = 0.

4. Let’s assume that the atoms are monovalent (i.e. there is only one electron on average
for each |�ni). Where is the Fermi level "F ? Say if the system is a metal or an insulator
and explain your arguments.

5. Determine the total T = 0 groundstate energy E0 of the monovalent atomic chain.
Compare the average energy per atom with the bandwidth.
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4.2 Peierls Instability

Let’s consider a chain of N >> 1 identical atoms and assume that each atom n has only
one electronic orbital �n(r), which is labeled by its ket |�ni. The chain is distorted, with the
atomic distances alternating between a1 and a2 (a1 + a2 = 2a, a1 > a2).

Figure 4.2: Distorted atomic chain

|�ni form an orthonormal basis set and the only non-zero matrix elements are:
8
><

>:

h�2m |H|�2m+1i = h�2m+1 |H|�2mi = �t(1� ⌘),

h�2m |H|�2m�1i = h�2m�1 |H|�2mi = �t(1 + ⌘),

h�2m |H|�2mi = h�2m+1 |H|�2m+1i = h�2m�1 |H|�2m�1i = "0 = 0

To the first order, the distortion parameter ⌘ > 0 is proportional to a1 � a2. For sake of
simplicity we choose the orbital energies "0 = 0.

1. Explain succinctly why the matrix elements above can be written in this form. Determine
the first Brillouin zone.

2. The electronic wavefunction can be decomposed on the atomic orbital basis

| i =
X

m

↵m |�2mi+ �m |�2m+1i .

By using the Bloch theorem and the translational invariance of the orbital wavefunctions
|�2mi and |�2m+1i, find the ratios between the coefficients ↵m/↵0 and �m/�0 for a given
Bloch wavevector k.

3. Write down the eigenvalue equation. By projecting separately on h�0| and h�1| determine
the energy spectrum "(k) and draw it in the first Brillouin zone. Remember that in
general a square root has two real solutions.

4. Let’s suppose that there is only one electron in each atomic orbital �n(r) (atoms are
monovalent). Where is the last occupied level of "(k)? Mark the Fermi level. Is it the
system in a metallic or insulating state?

5. Write down an integral expression of the total ground-state energy E1. Evaluate it in the
small ⌘ limit by using the expression

R ⇡
2
0 dx

p
1� (1� ↵2) sin2 x ⇡ 1 + ↵

2

2

⇥
ln

�
4
↵

�
� 1

2

⇤
,

valid for ↵ << 1.

6. Let’s consider the total energy E0 of the undistorted chain (a1 = a2 = a). Evaluate the
sign of E1 � E0 and draw a conclusion about what is the most energetically favorable
state of the chain from the electronic viewpoint.
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7. The structure and the conductivity of KCP (K2[Pt(CN)4]Br0.3 3H2O) are displayed in
Fig. 4.2. Explain why KCP can be well described by a one-dimensional tight-binding
model. What’s the orbital represented by |�ni? Give an interpretation of the behavior
of the conductivity (here we show the log of conductivity as a function of 1/T ). Is KCP
insulating or conducting under 150K? Say what happens at 150K.
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Figure 4.3: K2[Pt(CN)4]Br0.3 3H2O
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4.3 Square lattice in 2D

Let’s consider a square lattice of atoms in two dimensions (2D). Each atom position can be
labeled by ~R = m~ax + n~ay, being ~ax,~ay (|~ax| = |~ay| = a) the lattice generating vectors and
m,n 2 N. Let’s assume that each atom (m,n) has only one electronic orbital �m,n(r) (its
ket being |�m,ni) forming a complete orthonormal basis. On this basis set the only matrix
elements of the (hermitian) Hamiltonian are:

(
h�m,n |H|�m±1,ni = h�m,n |H|�m,n±1i = �t

h�m,n |H|�m,ni = "0 = 0

where t > 0 denotes the amplitude of an electron hopping between adjacent orbitals. The
electron wavefunction can be then decomposed on the atomic orbital basis:

| i =
X

m,n

cm,n |�m,ni

1. Find the relation between the coefficients cm,n for a given Bloch wavevector ~k = (kx, ky).
(Hint: use the translational invariance of the atomic orbitals and the Bloch theorem).

2. Determine and draw the first Brillouin zone.

3. Write down the eigenvalue equation and determine the electronic dispersion "~k. Sketch
"~k along the direction (0, 0) ! (⇡

a
, ⇡
a
) ! (⇡

a
, 0) ! (0, 0) (the symmetry axis and the zone

boundary) in the first Brillouin zone. What’s the bandwidth? Mark it on the drawing.

4. Sketch in the (kx, ky) plane the lines of constant energy "~k, first close to the band mini-
mum, then close to the band maximum, finally for "~k = 0.

5. Determine the effective mass close to the band minimum and maximum. Give also the
density of states in these regions.

6. The density of states close "~k = 0 is given by g(") = 2
⇡
g0 ln(

16t
|"| ) where g0 is the density

of states close to the band maximum and minimum which was calculated above. Sketch
the qualitative behavior of g(").

Figure 4.4: CuO2 plane in a cuprate superconductor
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7. Let’s suppose that the atoms are monovalent. Mark the Fermi level on the drawing of
g("). How many electrons per atom do we need in order to completely fill up the band ?

8. As example of such square lattice system we consider the high-temperature cuprate
superconductors (Fig. 4.4). These materials have a layered structure formed by CuO2

planes which are only weakly coupled. The conduction takes mainly place within these
planes, hence, under the electronic point of view, the cuprates can in first approximation
be considered as 2D systems. The Cu valence electron is located in a dx2�y2 orbital,
while the one of the oxygen is in a 2p orbital. It has been shown 1 that the p � d
hybridization may reduce this CuO2 system to an effective model with just one effective
orbital (resulting from the p � d hybridization) at each site of a square lattice. This
orbital is on average occupied by only one electron. According to Bloch band theory,
should the system be in a metallic or an insulating state?

1F.C. Zhang, T.M. Rice, Effective Hamiltonian for the superconducting Cu oxides, Phys. Rev., B 37, 3759
(1988).
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Semiconductors

The first junction Years 90s : 1011 transistors From the periodic
transistor (Bell Labs, 1950) on a disk of diameter 20 cm table of elements
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In this chapter we are going to study the behavior of the resistivity in semiconductors as a
function of temperature T . We shall focus in particular on the role played by impurities, which
is fundamental for technological applications.

We will use the following notation:

• "c : electron energy at the bottom of the conduction band (BC)

• "v : electron energy at the top of the valence band (BV)

• "g = "c � "v : gap energy

• m : electron mass

• e : electron charge (e > 0)

• mc : effective mass at the bottom of the conduction band

• mh : hole effective mass in the valence band

• N0 =
1p
2

⇣
m

⇡�~2

⌘3/2

= 2.42182 ⇥ 1025; Nc = N0

�
mc
m

�3/2; Nh = N0

�
mh
m

�3/2

• µe and µh : electron and hole mobility respectively

In general for an intrinsic or extrinsic semiconductor, the electron (nc) and hole (nh) densities
are given by:

nc(T ) = Nc exp [��("c � µ)] nh(T ) = Nh exp [��(µ� "v)] (5.1)

where µ(T ) is the electron chemical potential.

5.1 Resistivity of Intrinsic Semiconductors

The first 2 questions (not numbered) have been already treated during the course. You can
skip them if you already know the answers.

The free carriers in an intrinsic (pure) semiconductors are given on one side by the electrons,
which are thermally excited from the valence to the conduction band, and on the other side
by the holes left in the in the valence band by excited electrons. In this case we have then
nc(T ) = nh(T ) ⌘ ni(T ).

• Show that ni(T ) only depends on the gap-energy "g, the temperature T , and Nc, Nh. In
particular, it does not depend on the chemical potential µ.

• By using the relation above between nc(T ) and ni(T ) show that the chemical potential
in a intrinsic semiconductor is (within a good approximation) in the middle of the gap.
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1. Compare the number of charge carriers ni(T ) of Ge at room temperature ("g =0.67 eV,
mc/m = 0.55, mh/m = 0.29) with the one of Cu (imagine one electron per unit cell, the
order of magnitude is enough).

2. The mobility of Ge at room temperature is µe = 3600 cm2/Vs for the electrons and
µh = 1800 cm2/Vs for the holes. Give an order of magnitude of the conductivity of Ge
at room temperature. Compare it with the conductivity of Cu, whose electron mobility
µe = 44, 5 cm2/Vs is much smaller than the one of Ge. Are then intrinsic semiconductors
good conductors at room temperature ?

3. Carrier mobility depends in general on temperature. We shall assume that at room
temperature the phonons dominate the carrier scattering. We have then µe,h(T ) / T�3/2.
Give an expression of the conductivity and of the resistivity as a function of T . Compare
with figure 5.1, which displays the temperature-dependence of the resistivity of Ge. Can
you explain the behavior of the curve labeled “1”, which is the most pure sample? From
this curve we can also extract the value of the gap "g. Explain how.

5.2 Resistivity of Extrinsic Semiconductors

Semiconductors in applications are generally doped. A n�type semiconductor is doped with
atoms (donors) releasing electrons. In this case we shall call the donor concentration Nd, the
donor energy level "d and the number of ionized donors (which have actually released electrons
into the conduction band) nd(T ). Conversely, a p�type semiconductor is doped with atoms
which absorb electrons (acceptors). In this case we shall call the acceptor concentration Na,
the acceptor energy level "a and the number of ionized acceptors (which have actually left
holes into the valence band) na(T ).

1. We have typically "c � "d = 12.7 meV for a n�type and "a � "v = 10.8 meV for p�type
Ge semiconductor. Draw a schema representing, for both n�type and p�type cases, the
energy levels "c, "v, and "a or "d. Say if at room temperature doped Ge is a conductor
or an insulator.

2. Which dopant should we use in order to have n�type Ge, As or Ga (look at the periodic
table)?

3. Write the generic relation between nc, nh and nd (nc, nh and na) for a n�type (p�type)
semiconductor. The number of free carriers nc and nh are in general T -dependent.
How do the above relations simplify for a n�type (p�type) semiconductor in the limit
Nd >> nh ( Na >> nc) and kBT >> "c � "d (kBT >> "a � "v)?

4. We consider now a n�type semiconductor (the p�type is treated in a similar way) in
the so called extrinsic regime, for which "c � "v >> kBT >> "c � "d. In this case we
can also assume that nd >> nh. Find the T�dependence of the resistivity considering
that in this temperature range the electron scattering is dominated by impurities and
the mobility µe ⇠ T

3
2 .

5. What happens to the T�dependence of the resistivity at high temperature kBT >>
"c � "v?
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Figure 5.1: Resistivity of Ge as a function of 1/T , for different concentrations of antimony:
for the curves labeled 1-29, the density of the donor atoms varies from 5.3 ⇥ 1020 m�3 to
9.5 ⇥ 1023 m�3 (figure extracted from Solid State Physics, Ashcroft and Mermin, originally
from H. J. Fritzsche, J. Phys. Chem. Solids 6, 69, 1958).
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6. By analogy with the intrinsic case, guess the T�dependence of the resistivity at low
temperatures, when kBT  "c � "d. Can you finally explain the qualitative behavior of
the resistivity as a function of temperature for the doped Ge, displayed in Fig. 5.1?

5.3 p� n junction: the diode

Figure 5.2: Schema of a p� n junction

Nowadays half on industrial research in materials is focused on microelectronics, whose building
block is the transistor. Here we present a simple basic example of the transistor, the p � n
junction, which has uncountable applications: diodes, used to stabilize tensions or to create
continuous tensions, LEDs (light emitting diodes), solar cells, bipolar transistors which are
used for example to amplify electric signals (as in your hi-fi),...
Let’s consider then a semiconductor (like Si or Ge) in the extrinsic regime (all impurities are
ionized). The semiconductor is p�doped on one side (the P side) and n�doped on the other
(the N side), as displayed on Fig. 5.2. At the interface between the two regions a p�n junction
forms. At the equilibrium the electrons gas must have the same chemical potential, i.e. the
same Fermi energy, on both side of the junction. Therefore there should be a region around
the junction where "c and "v change continuously from the P to the N side, as displayed in
Fig. 5.2. We shall focus on the conduction band electrons (similar considerations hold for the
holes in the valence band).

1. The intermediate region between the P and N side has no free carrier (we call it the
depletion region). It is literally emptied of electrons/holes (the minus and plus signs
that remain sketched in the green P and red N regions are the remaining static charges,
once hole/electrons have escaped from the region). Explain why.
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2. Such a situation can be described imagining that a difference of potential Vd ⇠1 V sets
up between the P and N sides. In which direction is the corresponding electric field
E? (remember that ~E = �rV ). You may then describe in first approximation the
junction as a capacitor having charged plates, with the free carriers (electrons and holes)
accumulating as depicted in the bottom of Fig. 5.2.

3. With the effect of temperature there are thermal fluctuations. So it may happen that
some (few) electrons (we are always focusing on the conduction band) gain enough ther-
mal energy to win the potential energy gap and jump from the N side (the positive
plate of the capacitor) to the P side (the negative plate of the capacitor). Such a
process induces a current (remember that the convention is that the sense of the cur-
rent is the one of positive charges) which has form typical of through-a-gap probability
I0
P!N

= I0 exp(�eVd/kBT ). On the other hand, it happens that some few electrons on
the P side can enter by random processes into the depletion region, and at this point
the are attracted to the N side. There is then another current I0

N!P
. Find the relation

between I0
P!N

and I0
N!P

at the equilibrium at temperature T .

4. We now apply a tension U to the junction (lets insert the junction into a circuit with
a battery), such that the total tension is now Vd � U . Find the new expression of the
current IP!N(U) as a function of I0

P!N
. We assume that the (local) random processes

which determine the I0
N!P

are not much affected by U , hence IN!P (U) ' I0
N!P

. Find
an expression of the total neat current Itot(U) through the junction and sketch it as a
function of of the applied voltage U . You should discover the basic property of a diode.



6
Superconductivity

Magnet levitating above a superconductor. From
http://www.wou.edu/ rmiller09/superconductivity/
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6.1 Thermodynamics

Experimentally we observe that if the magnetic field applied to a type-I superconductor is
higher than a critical value Hc(T ) the Meissner effect disappears. The temperature-behavior
of Hc(T ) (if T is not too low) is well described by the phenomenological formula:

Hc(T ) ' Hc(T = 0)

"
1�

✓
T

Tc

◆2
#

(6.1)

6.1.1 Magnetic-field-driven transition at T =0

The Gibbs free energy variation per unit volume is given by dG = �SdT � µ0MdH, for small
temperature and magnetic-field variations.

1. Let’s consider a isotherm transformation. Show that the Gibbs free energy of the super-
conductor under the application of the field Ha is given by: :

G(Ha) = G(0)� µ0

Z
Ha

0

MdH (6.2)

2. What’s the value of the magnetization of a superconductor at T = 0 for Ha < Hc? Infer
the Gibbs free Gs(Ha) of the superconducting phase under the application of the field
Ha.

3. Give the expression of the Gibbs free energy in a normal phase Gn under the application
of the field Ha, by introducing Pauli susceptibility. Compare the order of magnitude of
this latter with the typical value of the susceptibility in the superconducting phase.

4. We know that for Ha = 0 the ground-state is the superconducting state. Therefore
�G = Gn(Ha = 0) � Gs(Ha = 0) > 0. Can you give a physical meaning to this
quantity? Remember the comparison above on the Pauli susceptibility in the normal
and superconducting phases. Sketch the behavior of Gs and Gn en function of Ha.
At which value Hc do these curves cross? What’s the groundstate for H > Hc? Give an
expression of Hc as a function of �G for T = 0.

6.1.2 H-T phase diagram

Sketch in the H � T plane the line of coexistence between the superconducting and normal
phases. The thermodynamic equilibrium between these two phase requires that Gs(T,Hc) =
Gn(T,Hc). By considering a small variation along the coexistence line (in this case the variation
in temperature dT and in magnetic field dH= dHc are constrained) find the transition latent
heat L = T (Sn � Ss). Consider in particular the cases T = 0 and 0 < T < Tc, what happens
to the latent heat in this case? Can you say what is “the order of the transition” ?

6.1.3 Specific Heat

Figure 6.1 displays the specific heat of aluminum in the superconducting and normal phases.
Normal phase has been induced under Tc by applying a weak magnetic field which destroys
superconductivity.
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Figure 6.1: From Solid State Physics, Ashcroft and Mermin, Harcourt, 1976.

1. What relevant physical quantity can we extract from the measure of the specific heat as
a function of temperature in the superconducting phase (the applied magnetic field is in
this case zero)?

2. The specific heat s given by C = T @S

@T
. Write down Cs � Cn as a function of the

temperature T and of T -derivatives of Ss and Sn.

3. By using the result of the previous section on the latent heat L, show that:

Cs � Cn = �2Tµ0

⇣Hc(0)

Tc

⌘2 h
1� 3

⇣ T

Tc

⌘2i
(6.3)

4. Apply the formula 6.3 above at T = Tc, find the value of the specific heat jump. What
relevant physical quantity related to the response of the superconductor to an applied
magnetic field can you derive from this expression (without applying a priori any mag-
netic field!)?
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6.2 Magnetic-field penetration into a type-I superconduct-

ing plate

A superconductor repels an external magnetic field (Meissner effect). By using London equa-
tions, show that the penetration of the magnetic induction vector ~B into a superconductor is
given by:

� ~B = (1/�2
L
) ~B (6.4)

where �L =
p

m/(µ0ne2) is the London penetration depth (m and e are the electron mass and
charge respectively, n the electron density) which is typically of the order of 100 nm.

Figure 6.2: “Thin” type-I superconducting plate

Let’s consider now the case of a thin infinite (L ! 1) plate of thickness 2a, as shown in Fig.
6.2, and let’s apply an external constant magnetic field whose induction is ~B.

1. Then inside the superconducting plate ~B is modified. However ~B can only depend on x.
Explain why.

2. Show that only the components y and z can penetrate within the superconductor. We
shall call ~Ba the projection of B on the y � z plane.

3. Prove that
~B(x) = ~Ba

cosh(x/�L)

cosh(a/�L)
(6.5)

and sketch it as a function of x.

4. Derive the supercurrent ~js. We consider that js = 0 if Ba = 0. Where are the currents
located? Sketch them on the drawing.


