Neutron and Photon Spectroscopy

Banyuls, France

February 5-9th 2018

JDR Meeticc

Part I: Introduction

10 011

Victor Balédent Laboratoire de Physique des Solides Université Paris-Sud, Orsay

Outline

1.1 Basics of Inelastic Physics

1.2 Inelastic Scattering

1.2.1 Inelastic Neutron Scattering1.2.2 Inelastic X-Ray Scattering1.2.3 Raman Spectroscopy

1.3 Absorption and Emission Spectroscopy

1.3.1 Infrared Spectroscopy1.3.2 X-ray Absorption Spectroscopy1.3.3 Resonant Inelastic X-ray Spectroscopy

1.1 Basic of Inelastic Physics

Momentum Conservation

q

- * Neutrons and photons Momentum : $\vec{p} = \hbar \vec{k}$
- * Transferred Momentum : $\vec{q} = \vec{k}_i \vec{k}_f$

$$\vec{q}_{min} = (k_i - k_f) \widetilde{k_i} \underset{\omega=0}{=} \vec{0} \qquad \vec{q}_{max} = (k_i + k_f) \widetilde{k_i} \underset{\omega=0}{=} 2\vec{k_i}$$

- Photons visible (λ~500nm ħω~2.5eV) : k_i~10⁻³ Å⁻¹
 Photons X-Ray : (λ~14Å ħω~900eV) : k_i~1 Å⁻¹
 Neutrons : (λ~2.36Å ħω~15meV) : k_i~1 Å⁻¹
- * Typical Brillouin Zone size $(a \sim 5 \text{ Å}) : q_X \sim 1 \text{ Å}^{-1}$

Energy Conservation

ħω,

 $\hbar\omega_{\rm f}$

ħω

• Neutrons : $\hbar \omega_i = \frac{p_i^2}{2m} = \frac{\hbar^2 k_i^2}{2m}$

Transferred energy : $\hbar\omega = \hbar\omega_i - \hbar\omega_f = \frac{\hbar^2}{2m}(k_i^2 - k_f^2)$

* Photons : $\hbar \omega_i = p_i c = \hbar c k_i$

Transferred energy : $\hbar\omega = \hbar\omega_i - \hbar\omega_f = \hbar c(k_i - k_f)$

Energy Conservation Elastic Intensity Charge - dd Compton excitations Core-Hole Phonons Plasmons Magnons 0.01 0.11001000 100 Energy (eV) Plasmon Excitation Crystal Field Magnon Phonon *d-d* & *e*-*h* Core hole 10-100 meV ~ 10 eV 0.1 - 100 keV $\sim 1 \text{ meV}$ $\sim 10 \text{ meV}$ ~1 eV Energy 9

Energy Conservation

Technique	Brillouin	Raman	Neutrons Scattering	Infrared	IXS	RIXS
Probe	Photon (Visible)	Photon (Visible)	Neutron	Photon	Photon (X-ray)	Photon (X-ray)
Particule Energy	~l eV	~1 eV	1 - 150 meV	1 - 100 meV	~10 keV	0.5 - 100 keV
Transfered Energy	0.01 - 1 meV	1 - 1000 meV	0.1 - 100 meV	1 - 100 meV	1 - 400 meV	-

Excitation	Crystal Field	Magnon	Phonon	d-d & e ⁻ -h	Plasmon	Core hole
Energy	~ 1 meV	~ 10 meV	10-100 meV	~1 eV	~ 10 eV	0.1 - 100 keV

Energy and Momentum are connected through dispersion relation :

 $\omega(\vec{q})$

For local excitations such as Crystal Field or Ising-like excitations, this dispersion relation may be constant :

$$\omega(\vec{q}) = \omega_0$$

This dispersion relation may be complex for collective modes such as Magnon, Phonons, etc... and is a fingerprint of the Hamiltonian parameters stabilizing the ground state.

Energy and Momentum Elastic Intensity Charge - dd Compton excitations Core-Hole Phonons Plasmons Magnons 100 1000 0 10Energy (eV) Excitation Crystal Field Magnon Phonon *d-d* & *e*-*h* Plasmon Core hole ~ 10 meV 10-100 meV ~1 eV $\sim 10 \text{ eV}$ 0.1 - 100 keV Energy $\sim 1 \text{ meV}$ 12

q

Neutron kinematic limit (close the triangle)

$$\vec{q} = \vec{k}_i - \vec{k}_f$$

$$\omega = \frac{\hbar^2}{2m} (k_i^2 - k_f^2) \qquad q = \sqrt{2k_i^2 - \frac{2m\omega}{\hbar} - 2k_i\sqrt{k_i^2 - \frac{2m\omega}{\hbar}}\cos(2\theta)}$$

Photon kinematic limit (close the triangle)

$$\vec{q} = \vec{k}_i - \vec{k}_f$$

$$\omega = \hbar c(k_i - k_f)$$

$$q = \sqrt{\frac{\omega^2}{c^2} + 2k_i^2(1 - \cos(2\theta)) - \frac{2k_i\omega}{c}(1 + \cos(2\theta))}$$

* X-Ray:
$$\omega \ll ck_i \Rightarrow q \approx \sqrt{1 - cos(2\theta)}k_i$$

Kinematic limit for X-Ray = Momentum Conservation

Spin Angular Momentum

* Neutron Spin Angular momentum $S_z = \pm \frac{\hbar}{2}$

 $\Delta S = 0$: Non Spin-Flip excitation $\Delta S = 1$: Spin-Flip excitation

* Photon Spin Angular Momentum $S_z = \pm \hbar$

 $\Delta M = 0$: Linear Polarization $\Delta M = -1$: Right Circular Polarization $\Delta M = +1$: Left Circular Polarization

1.2 Inelastic Scattering

Interaction neutron-nucleus Fermi pseudo-potential for nuclear interaction

 $\mathcal{V}(\vec{r}) = \frac{2\pi\hbar^2}{m_n} b\delta(\vec{r} - \vec{R})$

19

m_n : neutron mass

b : scattering length (complex and isotope-dependent)

Interaction neutron-nucleus

Fermi golden rule : $W_{i \to f} = \mathcal{P}_f \frac{2\pi}{\hbar} |\langle \psi_i | \mathcal{V} | \psi_f \rangle|^2$

$$\begin{aligned} |\psi_i\rangle &= \frac{1}{\sqrt{V}} e^{ik_i \cdot \vec{r}} \\ |\psi_f\rangle &= \frac{1}{\sqrt{V}} e^{i\vec{k}_f \cdot \vec{r}} \end{aligned} \qquad \int_V |\psi_i| d^3 \vec{r} = \int_V |\psi_f| d^3 \vec{r} = 1 \qquad \Phi_i = |\psi_i|^2 v = \frac{1}{V} \frac{\hbar k_i}{m_n} \end{aligned}$$

$$\mathcal{P}_{f,d\Omega} = \frac{dn}{dE_f} \frac{d\Omega}{4\pi} = \frac{dn}{dV_k} \frac{dV_k}{dk_f} \frac{dk_f}{dE_f} \frac{d\Omega}{4\pi} = \frac{V}{(2\pi)^3} 4\pi k_f^2 \frac{m_n}{\hbar^2 k_f} \frac{d\Omega}{4\pi} = \frac{V k_f m_n}{(2\pi)^3 \hbar^2} d\Omega$$

$$\frac{\partial \sigma}{\partial \Omega} = \frac{1}{\Phi_i} \frac{W_{i \to f, d\Omega}}{d\Omega} = \frac{k_f}{k_i} V^2 \left(\frac{m_n}{2\pi\hbar^2}\right)^2 |\langle \psi_i | \mathcal{V} | \psi_f \rangle|^2$$

$$= \frac{k_f}{k_i} \left| \sum_j b_j \int e^{i\vec{k}_i \cdot \vec{r}} \delta(\vec{r} - \vec{r}_j) e^{-i\vec{k}_f \cdot \vec{r}} d^3 \vec{r} \right|$$

 $= \frac{k_f}{k_i} \sum_{i} b_j e^{-i\vec{Q}.\vec{r_j}}$ Elastic Structure Factor F(Q)

Interaction neutron-nucleus

Fermi golden rule : $W_{i\to f} = \mathcal{P}_i \mathcal{P}_f \frac{2\pi}{\hbar} |\langle \psi_i | \mathcal{V} | \psi_f \rangle|^2 \delta(\omega_i - \omega_f - \omega)$

 $\frac{\partial^2 \sigma}{\partial \Omega \partial \omega} = \frac{1}{\Phi_i} \frac{W_{i \to f, d\Omega, d\omega}}{d\Omega d\omega}$ $= \frac{k_f}{k_i} \sum_{a_1, a_2} b_{a_1} b_{a_2} \int_{-\infty}^{+\infty} \langle e^{i \vec{Q} \cdot (\vec{R}_{a_1}(0) - \vec{R}_{a_2}(t))} \rangle e^{-i\omega t} dt$ $= \frac{k_f}{k_i} S(\vec{Q}, \omega)$ Dynamical Structure Factor

 $S(\vec{Q}, \omega) = FT(G(\vec{r}, t))$ Pair correlation function Time-dependent atomic position : $\vec{R}_a(t) = \vec{R}_c + \vec{r}_a + \vec{u}_a(t)$

 \mathbf{R}_{c} : cell position, \mathbf{r}_{a} : atom position in the cell

Interaction neutron-cristal

Inelastic scattering cross-section :

 $\frac{\partial^2 \sigma}{\partial \Omega \partial \omega} = \frac{k_f}{k_i} \sum_{c_1, c_2} e^{i\vec{Q}.(\vec{R}_{c_1} - \vec{R}_{c_2})} \sum_{a_1, a_2} b_{a_1} b_{a_2} e^{i\vec{Q}.(\vec{r}_{a_1} - \vec{r}_{a_2})} \int_{-\infty}^{+\infty} \langle e^{i\vec{Q}.(\vec{u}_{a_1}(0) - \vec{u}_{a_2}(t))} \rangle e^{-i\omega t} dt$

Thermodynamic average :

$$\langle e^{i\vec{Q}.(\vec{u}_{a_1}(0)-\vec{u}_{a_2}(t))} \rangle = e^{-W_{a_1}-W_{a_2}} e^{\langle \vec{Q}.(\vec{u}_{a_1}(0)-\vec{u}_{a_2}(t)) \rangle}$$

$$= e^{-W_{a_1}-W_{a_2}} \left[1 + \langle \vec{Q}.(\vec{u}_{a_1}(0)-\vec{u}_{a_2}(t)) \rangle + \dots \right]$$

$$= e^{-W_{a_1}-W_{a_2}} \left[1 + \langle \vec{Q}.(\vec{u}_{a_1}(0)-\vec{u}_{a_2}(t)) \rangle + \dots \right]$$

$$= e^{-W_{a_1}-W_{a_2}} \left[1 + \langle \vec{Q}.(\vec{u}_{a_1}(0)-\vec{u}_{a_2}(t)) \rangle + \dots \right]$$

$$= e^{-W_{a_1}-W_{a_2}} \left[1 + \langle \vec{Q}.(\vec{u}_{a_1}(0)-\vec{u}_{a_2}(t)) \rangle + \dots \right]$$

$$= e^{-W_{a_1}-W_{a_2}} \left[1 + \langle \vec{Q}.(\vec{u}_{a_1}(0)-\vec{u}_{a_2}(t)) \rangle + \dots \right]$$

$$= e^{-W_{a_1}-W_{a_2}} \left[1 + \langle \vec{Q}.(\vec{u}_{a_1}(0)-\vec{u}_{a_2}(t)) \rangle + \dots \right]$$

$$= e^{-W_{a_1}-W_{a_2}} \left[1 + \langle \vec{Q}.(\vec{u}_{a_1}(0)-\vec{u}_{a_2}(t)) \rangle + \dots \right]$$

$$= e^{-W_{a_1}-W_{a_2}} \left[1 + \langle \vec{Q}.(\vec{u}_{a_1}(0)-\vec{u}_{a_2}(t)) \rangle + \dots \right]$$

 $\vec{u}_{a,p}(t) = \sqrt{\frac{\hbar}{m_a \omega_p(\vec{q})}} e^{(i\vec{Q}.\vec{r}_a - \omega_p t)} \vec{\tilde{u}}_{a,p} : \text{harmonic phonon mode } p$

$$\begin{array}{l}
\textbf{Inelastic Neutron Scattering} \\
\underline{Phonons} \\
\frac{\partial^2 \sigma}{\partial \Omega \partial \omega} = N \frac{(2\pi)^3}{v_0} \sum_{\vec{G} \in RS} \delta(\vec{Q} - \vec{G}) \left| \sum_a b_a e^{-W_a} e^{i \vec{Q} \cdot \vec{r}_a} \right|^2 \\
\textbf{Elastic cross-section} \\
+ \frac{k_f}{k_i} \frac{(2\pi)^3}{v_0} \sum_{\vec{q} \in BZ} \delta(\vec{Q} - \vec{q} - \vec{G}) \sum_p \left| \sum_a \sqrt{\frac{\hbar}{m_a \omega_p(\vec{q})}} b_a e^{-W_a} e^{i \vec{Q} \cdot \vec{r}_a} (\vec{Q} \cdot \vec{u}_{a,p}) \right|^2 \\
\times [(1 + n_B(\omega_p(\vec{q}), T)) \delta(\omega - \omega_p(\vec{q})) + n_B(\omega_p(\vec{q}), T) \delta(\omega + \omega_p(\vec{q}))]
\end{array}$$

Inelastic cross-section

Phonons

23

Phonons : creation and annihilation

$$\begin{aligned} \frac{\partial^2 \sigma}{\partial \Omega \partial \omega} &= N \frac{(2\pi)^3}{v_0} \sum_{\vec{q} \in RS} \delta(\vec{q} - \vec{G}) \left| \sum_a b_a e^{-W_a} e^{i\vec{Q}.\vec{r}_a} \right|^2 \\ &+ \frac{k_f}{k_i} \frac{(2\pi)^3}{v_0} \sum_{\vec{q} \in BZ} \delta(\vec{Q} - \vec{q} - \vec{G}) \sum_p \left| \sum_a \sqrt{\frac{\hbar}{m_a \omega_p(\vec{q})}} b_a e^{-W_a} e^{i\vec{Q}.\vec{r}_a}(\vec{Q}.\vec{u}_{a,p}) \right|^2 \\ &\times \left[(1 + n_B(\omega_p(\vec{q}), T)) \delta(\omega - \omega_p(\vec{q})) + n_B(\omega_p(\vec{q}), T) \delta(\omega + \omega_p(\vec{q})) \right] \end{aligned}$$

Energy conservation : creation process

k.

q,

Phonons : creation and annihilation

$$\begin{aligned} \frac{\partial^2 \sigma}{\partial \Omega \partial \omega} &= N \frac{(2\pi)^3}{v_0} \sum_{\vec{G} \in RS} \delta(\vec{Q} - \vec{G}) \left| \sum_a b_a e^{-W_a} e^{i\vec{Q}.\vec{r}_a} \right|^2 \\ &+ \frac{k_f}{k_i} \frac{(2\pi)^3}{v_0} \sum_{\vec{q} \in BZ} \delta(\vec{Q} - \vec{q} - \vec{G}) \sum_p \left| \sum_a \sqrt{\frac{\hbar}{m_a \omega_p(\vec{q})}} b_a e^{-W_a} e^{i\vec{Q}.\vec{r}_a} (\vec{Q}.\vec{\tilde{u}}_{a,p}) \right|^2 \\ &\times \left[(1 + n_B(\omega_p(\vec{q}), T)) \delta(\omega - \omega_p(\vec{q})) + n_B(\omega_p(\vec{q}), T) \delta(\omega + \omega_p(\vec{q})) \right] \end{aligned}$$

Energy conservation : annihilation process

k.

q

 \mathbf{k}_{r}

Phonons : creation and annihilation

$$\begin{aligned} \frac{\partial^2 \sigma}{\partial \Omega \partial \omega} &= N \frac{(2\pi)^3}{v_0} \sum_{\vec{G} \in RS} \delta(\vec{Q} - \vec{G}) \left| \sum_a b_a e^{-W_a} e^{i\vec{Q}.\vec{r}_a} \right|^2 \\ &+ \frac{k_f}{k_i} \frac{(2\pi)^3}{v_0} \sum_{\vec{q} \in BZ} \delta(\vec{Q} - \vec{q} - \vec{G}) \sum_p \left| \sum_a \sqrt{\frac{\hbar}{m_a \omega_p(\vec{q})}} b_a e^{-W_a} e^{i\vec{Q}.\vec{r}_a} (\vec{Q}.\vec{u}_{a,p}) \right|^2 \\ &\times \left[(1 + n_B(\omega_p(\vec{q}), T)) \delta(\omega - \omega_p(\vec{q})) + n_B(\omega_p(\vec{q}), T) \delta(\omega + \omega_p(\vec{q})) \right] \\ n_B(\omega, T) &= \frac{1}{e^{\frac{\hbar\omega}{k_B T}} - 1} : \text{detailed balance factor} \end{aligned}$$

Inelastic Neutron Scattering Phonons and polarization factor $\left. \frac{\partial^2 \sigma}{\partial \Omega \partial \omega} \right|_{inel} = \frac{k_f}{k_i} \frac{(2\pi)^3}{v_0} \sum_{\vec{q} \in BZ} \delta(\vec{Q} - \vec{q} - \vec{G}) \sum_p \left| \sum_a \sqrt{\frac{\hbar}{m_a \omega_p(\vec{q})}} b_a e^{-W_a} e^{i\vec{Q}.\vec{r_a}} (\vec{Q}.\vec{\tilde{u}}_{a,p}) \right|_{\vec{q} \in BZ}$ $\times \left[(1 + n_B(\omega_p(\vec{q}), T)) \delta(\omega - \omega_p(\vec{q})) + n_B(\omega_p(\vec{q}), T) \delta(\omega + \omega_p(\vec{q})) \right]$ Sensitive to displacement parallel to $\vec{Q} = \vec{G} + \vec{q}$ ISVErse **J**g1t $2\pi/q$ 27

Phonons and polarization factor

Neutron Facilities Worldwide

Monochromator (first axis) : Incident energy selection

Sample (second axis) : Q selection

Analyzer (third axis) : Final energy selection

Detector

Experimental setup : Triple Axis Spectrometer (TAS)

Elastic

Inelastic

Inelastic

Spectrometer	Incident energy (meV)	Transfered energy (meV)	Resolution (meV)	Q _{max} - Q _{max} (A ⁻¹)	Resolution (A ⁻¹)
Cold	2-25	0 - 12	0.05 @1.05A ⁻¹ 0.2 @1.57A ⁻¹ 1.2 @2.662A ⁻¹	0.01 - 3	0.01
Thermal	10 - 140	0 - 100	0.8 @2.662A ⁻¹ 3.5 @4.1A ⁻¹	0.3 - 10	0.01

Experimental setup : Triple Axis Spectrometer (TAS)

Constant ω scan

Jonstant

XC

scal

31

Experimental setup : Triple Axis Spectrometer (TAS)

Point-to-point acquisition Sample orientation, incident and final energy can be selected Constant **Q** and ω scans Resolution : 4-dimension ellipsoid, $\delta \omega \propto k_f^3$

32

Inelastic Neutron Scattering Experimental setup : Time Of Flight (TOF)

Experimental setup : Time Of Flight (TOF) Map acquisition : parabola in (\mathbf{Q}, ω) space :

$$\left(\frac{\hbar^2 k_i^2}{2m} - \hbar\omega\right) = \frac{\hbar^2}{2m} \left(Q_\perp^2 + \left(k_I - Q_{//}\right)^2\right)$$

Sample orientation and incident energy can be changed No constant \mathbf{Q} and ω scans Constant \mathbf{Q} and ω scans : cuts & integration

Superconductivity

Phonon lifetime increase below T_C Estimation of the gap (BCS) $2\Delta = 4.4 \pm 0.6 \ k_B T_C$
Inelastic Neutron Scattering

Charge Density Wave

Softening of the phonon at the CDW wavevector

Inelastic Neutron Scattering

Ferroelectricity

Phonon energy decreases at low temperature Fingerprint of ferroelectric transition

Inelastic Neutron Scattering

Summary

- * Inelastic neutron scattering allows a direct measure of the dispersion relation of acoustic and optical phonons $\omega(\vec{q})$
- * Geometrical selection of transverse or longitudinal modes
- * Phonon intensity $\sim Q^2$
- * This dispersion give access to :
 - Interatomic potential and bonding
 - Phase transition and critical phenomena (soft mode ...)
 - Interactions (electron-phonon ...)

"The photons which constitute a ray of light behave like intelligent human beings: out of all possible curves they always select the one which will take them most quickly to their goal."

> Max Planck 1918 Nobel laureate in Physics

Interaction X-ray-electron

Interaction light-electron :

$$\mathcal{V}(\vec{r}) = \frac{q}{m_e c} \vec{p}.\vec{A}(\vec{r}) + \frac{q^2}{m_e c^2} \vec{A}^2$$

m_e : electron mass Neglecting the second order term :

$$\mathcal{V}(\vec{r}) = \frac{q}{m_e c} \vec{p}.\vec{A}(\vec{r}) = \frac{q}{c} \vec{r}.Ee^{-i\vec{k}.\vec{r}}\vec{\epsilon} = \frac{qE}{c} \vec{r}.\vec{\epsilon}$$

$$\frac{\partial^2 \sigma}{\partial \Omega \partial \omega} = \frac{k_f}{k_i} \sum_{e_1, e_2} r_e^2 |\vec{\epsilon}_i \cdot \vec{\epsilon}_f|^2 \int_{-\infty}^{+\infty} \langle e^{i\vec{Q} \cdot \vec{r}_{e_1}(0)} e^{-i\vec{Q} \cdot \vec{r}_{e_2}(t)} \rangle e^{-i\omega t} dt$$

$$= \frac{k_f}{k_i} r_e^2 |\vec{\epsilon}_i \cdot \vec{\epsilon}_f|^2 \sum_{a_1, a_2} f_{a_1}(\vec{Q}) f_{a_2}(\vec{Q}) \int_{-\infty}^{+\infty} \langle e^{i\vec{Q} \cdot \vec{R}_{a_1}(0)} e^{-i\vec{Q} \cdot \vec{R}_{a_2}(t)} \rangle e^{-i\omega t} dt$$

$$= \frac{k_f}{k_i} r_e^2 |\vec{\epsilon}_i \cdot \vec{\epsilon}_f|^2 S(\vec{Q}, \omega)$$
40

Interaction X-ray-electron

Interaction light-electron :

$$\mathcal{V}(\vec{r}) = \frac{q}{m_e c} \vec{p}.\vec{A}(\vec{r}) + \frac{q^2}{m_e c^2} \vec{A}^2$$

m_e : electron mass Neglecting the second order term :

$$\mathcal{V}(\vec{r}) = \frac{q}{m_e c} \vec{p}.\vec{A}(\vec{r}) = \frac{q}{c} \vec{r}.Ee^{-i\vec{k}.\vec{r}}\vec{\epsilon} = \frac{qE}{c} \vec{r}.\vec{\epsilon}$$

$$\begin{aligned} \frac{\partial^2 \sigma}{\partial \Omega \partial \omega} &= \frac{k_f}{k_i} \sum_{e_1, e_2} r_e^2 \left| \vec{\epsilon_i} \cdot \vec{\epsilon_f} \right|^2 \int_{-\infty}^{+\infty} \langle e^{i \vec{Q} \cdot \vec{r_{e_1}}(0)} e^{-i \vec{Q} \cdot \vec{r_{e_2}}(t)} \rangle e^{-i \omega t} dt \\ &= \frac{k_f}{k_i} r_e^2 \left| \vec{\epsilon_i} \cdot \vec{\epsilon_f} \right|^2 \sum_{a_1, a_2} \int_{a_1} \vec{Q} f_{a_2}(\vec{Q}) \int_{-\infty}^{+\infty} \langle e^{i \vec{Q} \cdot \vec{R_{a_1}}(0)} e^{-i \vec{Q} \cdot \vec{R_{a_2}}(t)} \rangle e^{-i \omega t} dt \\ &= \frac{k_f}{k_i} r_e^2 \left| \vec{\epsilon_i} \cdot \vec{\epsilon_f} \right|^2 S(\vec{Q}, \omega) \quad \begin{array}{c} \text{Scattering form factor} \\ &= 40 \end{aligned}$$

Form factor of an atom Depends of the electronic density :

$$f(\vec{Q}) = \int \rho(\vec{r}) e^{i\vec{Q}.\vec{r}} d^3\vec{r}$$
$$f(\vec{Q} = \vec{0}) = \mathcal{Z}$$

Interaction X-ray-electron

Interaction light-electron :

$$\mathcal{V}(\vec{r}) = \frac{q}{m_e c} \vec{p}.\vec{A}(\vec{r}) + \frac{q^2}{m_e c^2} \vec{A}^2$$

m_e : electron mass Neglecting the second order term :

$$\mathcal{V}(\vec{r}) = \frac{q}{m_e c} \vec{p}.\vec{A}(\vec{r}) = \frac{q}{c} \vec{r}.Ee^{-i\vec{k}.\vec{r}}\vec{\epsilon} = \frac{qE}{c} \vec{r}.\vec{\epsilon}$$

 $\frac{\partial^2 \sigma}{\partial \Omega \partial \omega} = \frac{k_f}{k_i} \sum_{\alpha \in \mathcal{O}} r_e^2 \left| \vec{\epsilon}_i \cdot \vec{\epsilon}_f \right|^2 \int_{-\infty}^{+\infty} \langle e^{i\vec{Q} \cdot \vec{r}_{e_1}(0)} e^{-i\vec{Q} \cdot \vec{r}_{e_2}(t)} \rangle e^{-i\omega t} dt$ $=\frac{k_f}{k_i}r_e^2 |\vec{\epsilon_i}.\vec{\epsilon_f}|^2 \sum_{a_1,a_2} f_{a_1}(\vec{Q})f_{a_2}(\vec{Q}) \int_{-\infty}^{+\infty} \langle e^{i\vec{Q}.\vec{R}_{a_1}(0)}e^{-i\vec{Q}.\vec{R}_{a_2}(t)} \rangle e^{-i\omega t} dt$ $=\frac{k_f}{k_i}r_e^2[\vec{\epsilon_i}.\vec{\epsilon_f}]^2 S(\vec{Q},\omega) \quad \begin{array}{c} \text{Polarization factor} \\ 49 \end{array}$

Polarization factor

Polarization in scattering plane : $|\vec{\epsilon}_i \cdot \vec{\epsilon}_f|^2 = cos(2\theta)$

Polarization perpendicular to scattering plane : $|\vec{\epsilon}_i \cdot \vec{\epsilon}_f|^2 = 1$

Unpolarized beam : $|\vec{\epsilon}_i \cdot \vec{\epsilon}_f|^2 = \frac{1 + \cos^2(2\theta)}{2}$

Interaction X-ray-cristal

Time-dependent atomic position : $\vec{R}_a(t) = \vec{R}_c + \vec{r}_a + \vec{u}_a(t)$ \mathbf{R}_c : cell position, \mathbf{r}_a : atom position in the cell Scattering cross-section :

 $\frac{\partial^2 \sigma}{\partial \Omega \partial \omega} = \frac{k_f}{k_i} r_e^2 |\vec{\epsilon_i}.\vec{\epsilon_f}|^2 \sum_{c_1,c_2} e^{i\vec{Q}.(\vec{R}_{a_1}-\vec{R}_{a_2})} \sum_{a_1,a_2} f_{a_1}(\vec{Q}) f_{a_2}(\vec{Q}) e^{i\vec{Q}.(\vec{r}_{a_1}-\vec{r}_{a_2})} \\ \times \int^{+\infty} \langle e^{i\vec{Q}.(\vec{u}_{a_1}(0)-\vec{u}_{a_2}(t))} \rangle e^{-i\omega t} dt$

Thermodynamic average :

 $\langle e^{i\vec{Q}.(\vec{u}_{a_1}(0) - \vec{u}_{a_2}(t))} \rangle = e^{-W_{a_1} - W_{a_2}} e^{\langle \vec{Q}.(\vec{u}_{a_1}(0) - \vec{u}_{a_2}(t)) \rangle}$

Elastic Scattering $W_{a_1} = \frac{1}{2} \langle \left| \vec{Q} \cdot \vec{u}_{a_1}(t) \right|^2 \rangle$: Debye-Waller factor Inelastic Scattering

$$\begin{aligned} & \text{Elastic cross-section Phonons} \\ \hline \frac{\partial^{2}\sigma}{\partial\Omega\partial\omega} = N \frac{(2\pi)^{3}}{v_{0}} r_{e}^{2} |\vec{\epsilon}_{i}.\vec{\epsilon}_{f}|^{2} \sum_{\vec{C}\in RS} \delta(\vec{Q}-\vec{G}) \left| \sum_{a} f_{a}(\vec{Q})e^{-W_{a}}e^{i\vec{Q}.\vec{r}_{a}} \right|^{2} \\ & \text{1 phonon term} \\ \text{(1st order)} \end{aligned} \\ & + \frac{k_{f}}{k_{i}} \frac{(2\pi)^{3}}{v_{0}} r_{e}^{2} |\vec{\epsilon}_{i}.\vec{\epsilon}_{f}|^{2} \sum_{\vec{q}\in BZ} \delta(\vec{Q}-\vec{q}-\vec{G}) \sum_{p} \left| \sum_{a} \sqrt{\frac{\hbar}{m_{a}\omega_{p}(\vec{q})}} f_{a}(\vec{Q})e^{-W_{a}}e^{i\vec{Q}.\vec{r}_{a}} (\vec{Q}.\vec{u}_{a,p}) \right|^{2} \\ & \times \left[(1+n_{B}(\omega_{p}(\vec{q}),T))\delta(\omega-\omega_{p}(\vec{q})) + n_{B}(\omega_{p}(\vec{q}),T)\delta(\omega+\omega_{p}(\vec{q})) \right] \\ & + \frac{k_{f}}{k_{i}} \frac{(2\pi)^{3}}{v_{0}} r_{e}^{2} |\vec{\epsilon}_{i}.\vec{\epsilon}_{f}|^{2} \\ & \times \sum_{\vec{q},\vec{q}^{2}\in BZ} \delta(\vec{Q}-\vec{q}-\vec{q}^{2}-\vec{G}) \frac{1}{2} \sum_{p,p'} \left| \sum_{a} \frac{\hbar}{m_{a}\sqrt{\omega_{p}(\vec{q})}\omega_{p'}(\vec{q}')} f_{a}(\vec{Q})e^{-W_{a}}e^{i\vec{Q}.\vec{r}_{a}} (\vec{Q}.\vec{u}_{a,p})(\vec{Q}.\vec{u}_{a,p'}) \right|^{2} \\ & \times \left[(1+n_{B}(\omega_{p}(\vec{q}),T))(1+n_{B}(\omega'_{p}(\vec{q}'),T))\delta(\omega-\omega_{p}(\vec{q})-\omega_{p'}(\vec{q}')) \\ & + 2n_{B}(\omega_{p}(\vec{q}),T)(1+n_{B}(\omega'_{p}(\vec{q}'),T))\delta(\omega+\omega_{p}(\vec{q})) - \omega_{p'}(\vec{q}')) \\ & + 2n_{B}(\omega_{p}(\vec{q}),T)n_{B}(\omega'_{p}(\vec{q}'),T)\delta(\omega+\omega_{p}(\vec{q})) + \omega_{p'}(\vec{q}')) \right] \end{aligned}$$

Synchrotron Facilities worldwide

Experimental setup

Reflection	Energy (keV)	Resolution (meV)	$\begin{array}{c} Q_{max} extsf{-} & Q_{max} \\ (A^{-1}) \end{array}$	Resolution (A ⁻¹)	Flux (ph.s ⁻¹)
Si(7,7,7)	13.840	$7.6 \pm .2$	0.1 - 6.4	0.02	1.1 1011
Si(9,9,9)	17.794	$3.0 \pm .2$	0.1 - 8.3	0.027	$2.7 \ 10^{10}$
Si(11,11,11)	21.747	$1.5 \pm .1$	0.1 - 10.1	0.034	6.6 10 ⁹
Si(13,13,13)	25.704	$1.0 \pm .1$	0.1 - 12.0	0.040	1.5 109

Superconductivity

• Comparison of data and calculation. In (a) the Fib 3 in spiot resents - Mfor Note the 2-phonon contribution (black) is not e and 2-phonon contributions are shown while (he gligible as compared to the E_{2g} mode (green). Pure calculation is shown

Charge Density Wave

Phonon softening at QCDW : fingerprint of CDW

Summary

* Inelastic X-ray scattering allows a direct measure of the dispersion relation of excitations $\omega(\vec{q})$

* Geometrical selection of transverse or longitudinal mode

- * Phonon intensity $\sim Q^2$
- * This dispersion give access to :
 - Interatomic potential and bonding
 - Phase transition and critical phenomena (soft mode ...)
 - Interactions (electron-phonon ...)

Summary

INS

Strong ω -Q correlation: Kinematic limit No polarization factor $I \sim b^2$ Incoherent Scattering Bulk measurement Large beam ~ cm Resolution down to 0.1 meV

IXS

No ω -Q correlation : No kinematic limitation Polarization factor : $|\vec{\epsilon_i}.\vec{\epsilon_f}|^2$ $I \sim Z^2$ No incoherent Scattering Strong absorption $\sim \lambda^3 Z^4$ Small beam $\sim 100 \mu m$ Resolution $\sim 1 meV$

Interaction light-electron Interaction potential : $\mathcal{V}(\vec{r}) = -\vec{\mu}_{ind}.\vec{E}_f$

$$\vec{\mu}_{ind} = \overline{\alpha}.\vec{E}_i = \overline{\alpha}_0.\vec{E}_i + \left(\frac{\partial\overline{\alpha}}{\partial Q}\right)_{Q=0} Q.\vec{E}_i : \text{induced dipole moment}$$

$$Q_{p}(t) = Q_{0}cos(\omega_{p}t) : \text{normal phonon } p$$

$$\vec{E}_{i} = E_{i}cos(\omega_{i}t)\vec{\epsilon}_{i} : \text{incident photon}$$

$$\overline{\overline{\alpha}} = \begin{bmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{bmatrix} : \text{polarization tensor}$$

$$\frac{\partial^{2}\sigma}{\partial\Omega\partial\omega} = k_{i}k_{f}^{3}r_{e}^{2}\int_{-\infty}^{+\infty} \langle \vec{\epsilon}_{f}.\overline{\alpha}(0).\vec{\epsilon}_{i} \ \vec{\epsilon}_{f}.\overline{\alpha}(t).\vec{\epsilon}_{i} \rangle e^{-i\omega t}dt$$

$$= k_{i}^{4}r_{e}^{2} \left| \vec{\epsilon}_{i}.\overline{\alpha}_{0}.\vec{\epsilon}_{i} \right|^{2} \textbf{Rayleigh Scattering}$$

$$+ \frac{k_{f}}{k_{i}}r_{e}^{2}\sum_{p}\int_{-\infty}^{+\infty} \langle \vec{\epsilon}_{f}.\left(\frac{\partial\overline{\alpha}}{\partial Q}\right)_{Q=0} Q_{p}(0).\vec{\epsilon}_{i} \ \vec{\epsilon}_{f}.\left(\frac{\partial\overline{\alpha}}{\partial Q}\right)_{Q=0} Q_{p}(t).\vec{\epsilon}_{i} \rangle e^{-i\omega t}dt$$

3 Raman active modes :

1 Raman active mode :

$$\left(\frac{\partial \overline{\overline{\alpha}}}{\partial Q}\right)_{Q=0} \neq 0$$

 $\left(\frac{\partial \overline{\overline{\alpha}}}{\partial Q}\right)_{Q=0} \neq 0$

2 Raman inactive modes :

$$\frac{\partial \overline{\overline{\alpha}}}{\partial Q} \bigg)_{Q=0} = 0$$

Relation with the mode symmetry !!!

Nomenclatura : Mulliken symbols

A	Symmetric with respect to the main axis of symmetry
В	Antisymmetric with respect to the main axis of symmetry
)	Symmetric with respect to a plane of symmetry
"	Antisymmetric with respect to a plane of symmetry
g	Symmetric with respect to the center of inversion
u	Antisymmetric with respect to the center of inversion
E	Doubly degenerate with respect to the main axis
T (or F)	Triply degenerate with respect to the main axis
G	Fourfold degenerate with respect to the main axis
H	Fivefold degenerate with respect to the main axis
1,2,3	Symmetric or antisymmetric with respect to a rotation axis

3 Raman active modes :

1 Raman active mode :

$$\left(\frac{\partial \overline{\overline{\alpha}}}{\partial Q}\right)_{Q=0} \neq 0$$

 $\left(\frac{\partial \overline{\overline{\alpha}}}{\partial Q}\right)_{Q=0} \neq 0$

2 Raman inactive modes :

$$\frac{\partial \overline{\overline{\alpha}}}{\partial Q} \bigg)_{Q=0} = 0$$

Relation with the mode symmetry !!!

Triclinic Monoclinic		Trigo (Rhon	Trigonal (Rhombohedral)		Tetragonal		Hexagonal		Cubic		
$C_1 \\ C_i$	$\frac{1}{1}$	$C_2 \ C_S$	2 m	$C_3 \\ C_{3i}$	$\frac{3}{3}$	$C_4 \\ S_4$	$\frac{4}{4}$	$C_6 \ C_{3h}$	$\frac{6}{6}$	Т	23
		$C_{2h} \ C_{2v}$	2/m mm2	C_{3v}	3 <i>m</i>	$C_{4h} \ C_{4v}$	4/m 4mm	$C_{6h} \\ C_{6v}$	6/m 6mm	T_h	m3
		D_2 D_{2h}	222 mmm	D_{3d} D_3	$\overline{3}m$ 32	$D_{2d} \ D_4 \ D_{4h}$	42 <i>m</i> 422 4/mmm	D_{3h} D_6 D_{6h}	6m2 622 6/mmm	T_d O O_h	$ \overline{43m} 432 m\overline{3m} $

Symmetry element	Schönflies notation	International (Hermann-Mauguin)
Identity	Ε	1
Rotation axes	C_n	n = 1, 2, 3, 4, 6
Mirror planes	σ	т
\perp to <i>n</i> -fold axis	σ_h	<i>m</i> , <i>m</i> _z
to <i>n</i> -fold axis	$\sigma_{\!\scriptscriptstyle V}$	m_{ν} ,
bisecting $\angle(2,2)$	σ_{d}	m_d, m'
Inversion	Ι	$\overline{1}$
Rotoinversion axes	S_n	$n = \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{6}$
Translation	t_n	t_n
Screw axes	C_n^k	n_k
Glide planes	σ^{g}	<i>a</i> , <i>b</i> , <i>c</i> , <i>n</i> , <i>d</i>

Х

CaCO₃ $R\overline{3}c(\#167)$ Ca (6b) : (0,0,0) C (6a) : (0,0,1/4) O (18e) : (x,0,1/4)

Character Table

D _{3d} (-3m)	#	1	3	2	-1	-3	m _d	functions
Mult.	-	1	2	3	1	2	3	
A _{1g}	Γ ₁ +	1	1	1	1	1	1	x ² +y ² ,z ²
A _{2g}	Г ₂ +	1	1	-1	1	1	-1	Jz
Eg	Г ₃ +	2	-1	0	2	-1	0	(x ² -y ² ,xy),(xz,yz) (J _x ,J _y)
A _{1u}	Γ ₁ -	1	1	1	-1	-1	-1	
A _{2u}	Γ ₂ -	1	1	-1	-1	-1	1	z
Eu	Г ₃ -	2	-1	0	-2	1	0	(x,y)

5 Raman active modes

WP	A _{1g}	A _{1u}	A _{2g}	A _{2u}	Eu	Eg
18e	1	•	•	•	•	3
6a	•	•	•	•	•	1
6b		•	•	•	•	•

58

CaCO₃ $R\overline{3}c(\#167)$ Ca (6b) : (0,0,0) C (6a) : (0,0,1/4) O (18e) : (x,0,1/4)

Character Table

D _{3d} (-3m)	#	1	3	2	-1	-3	m _d	functions
Mult.	-	1	2	3	1	2	3	
A _{1g}	Γ ₁ +	1	1	1	1	1	1	x ² +y ² ,z ²
A _{2g}	Г ₂ +	1	1	-1	1	1	-1	Jz
Eg	Г ₃ +	2	-1	0	2	-1	0	(x ² -y ² ,xy),(xz,yz) (J _x ,J _y)
A _{1u}	Γ ₁ -	1	1	1	-1	-1	-1	
A _{2u}	۲ ₂ -	1	1	-1	-1	-1	1	z
Eu	Г ₃ -	2	-1	0	-2	1	0	(x,y)

5 Raman active modes Raman tensors :

	A _{1g}			E _{g,1}		E _{g,2}		
а	•	•	с	•	•	•	-C	-d
•	а	•	•	-c	d	-c	•	•
		b		d	•	-d	•	•

58

Back-Scattering Geometry

A _{1g}				E _{g,1}		E _{g,2}		
а	•	•	С	с · ·			-c	-d
	а	•	•	-c	d	-c	•	•
	•	b	•	d	•	-d	•	•

Back-Scattering Geometry

	A _{1g}			E _{g,1}		E _{g,2}		
а	•	•	С	•	•	•	-с	-d
•	а	•	•	-c	d	-c	•	•
•	•	b	•	d	•	-d		•

Back-Scattering Geometry

Right Angle Geometry

	A _{1g}			E _{g,1}		E _{g,2}		
a	•	•	с	•	•	•	-c	-d
·	а	•	•	-c	d	-с	•	•
	•	b	•	d	•	-d	•	•

59

60

Ferroelectricity

Phonon energy decreases at low temperature Fingerprint of ferroelectric transition

Charge Density Wave

Amplitude mode : zone-boundary (L point) transverse acoustic phonons folded to Q=0 zone center (Γ point) due to CDW

Summary

* Sensitive to zone center (Q=0) excitations

Polarization enables mode-symmetry selectivity

- * Give access to :
 - Ferroelectric instability
 - CDW fingerprint
 - Translational symmetry breaking
- Overdamped peaks for metals

* Beyond this lecture : Hyper-Raman, Resonant Raman...

1.3 Absorption and Emission Spectroscopy

Infrared Spectroscopy

Interaction light-electron Interaction potential : $\mathcal{V}(\vec{r}) = -\vec{\mu}_{ind}.\vec{E}_i$

 $\vec{\mu}_{ind} = \vec{\mu}_0 + \left(\frac{\partial \vec{\mu}}{\partial Q}\right)_{Q=0} Q_p(\omega_p, t)$: induced dipole moment

 $Q_p(\omega_p, t) = Q_0 cos(\omega_p t)$: normal phonon p $\vec{E_i} = E_i cos(\omega_i t) \vec{\epsilon_i}$: incident photon

$$\sigma(\omega_i) = \left| \left(\frac{\partial \vec{\mu}}{\partial Q} \right)_{Q=0} \right|^2 \sum_p \int_{-\infty}^{+\infty} \langle Q_p(0) Q_p(t) \rangle e^{-i\omega_i t} dt$$
$$= \left| \left(\frac{\partial \vec{\mu}}{\partial Q} \right)_{Q=0} \right|^2 \sum_p \delta(\omega_i - \omega_p)$$

$$\left(\frac{\partial \overline{\overline{\alpha}}}{\partial Q}\right)_{Q=0} \neq 0 \qquad \left(\frac{\partial \overline{\mu}}{\partial Q}\right)_{Q=0} \neq 0$$

3 Raman and IR active modes : 1 Raman active and IR inactive mode :

$$\left(\frac{\partial \overline{\overline{\alpha}}}{\partial Q}\right)_{Q=0} \neq 0 \qquad \left(\frac{\partial \overline{\mu}}{\partial Q}\right)_{Q=0} = 0$$

2 Raman inactive and IR active modes :

$$\left(\frac{\partial \overline{\overline{\alpha}}}{\partial Q}\right)_{Q=0} = 0 \qquad \left(\frac{\partial \overline{\mu}}{\partial Q}\right)_{Q=0} \neq 0$$

Relation with the mode symmetry !!!

CaCO₃ $R\overline{3}c(\#167)$ Ca (6b) : (0,0,0) C (6a) : (0,0,1/4) O (18e) : (x,0,1/4)

Character Table

D _{3d} (-3m)	#	1	3	2	-1	-3	m _d	functions
Mult.	-	1	2	3	1	2	3	
A _{1g}	Γ ₁ +	1	1	1	1	1	1	x ² +y ² ,z ²
A _{2g}	Γ ₂ +	1	1	-1	1	1	-1	Jz
Eg	Г ₃ +	2	-1	0	2	-1	0	$(x^2-y^2,xy),(xz,yz),(J_x,J_y)$
A _{1u}	Γ ₁ -	1	1	1	-1	-1	-1	
A _{2u}	۲ ₂ -	1	1	-1	-1	-1	1	z
Eu	Г ₃ -	2	-1	0	-2	1	0	(x,y)

8 IR active modes

WP	A _{1g}	A _{1u}	A _{2g}	A _{2u}	Eu	Eg
18e	•	•	•	2	3	•
6a	•	•	•	1	1	•
6b	•	•	•	1	2	•

Absorption Geometry

D _{3d} (-3m)	#	1	3	2	-1	-3	m _d	functions
Mult.	-	1	2	3	1	2	3	
A _{1g}	Γ ₁ +	1	1	1	1	1	1	x ² +y ² ,z ²
A _{2g}	Γ ₂ +	1	1	-1	1	1	-1	Jz
Eg	Г ₃ +	2	-1	0	2	-1	0	$(x^2-y^2,xy),(xz,yz),(J_x,J_y)$
A _{1u}	Γ ₁ -	1	1	1	-1	-1	-1	
A _{2u}	Γ ₂ -	1	1	-1	-1	-1	1	z
Eu	Г ₃ -	2	-1	0	-2	1	0	(x,y)

Absorption Geometry

D _{3d} (-3m)	#	1	3	2	-1	-3	m _d	functions
Mult.	-	1	2	3	1	2	3	
A _{1g}	Γ ₁ +	1	1	1	1	1	1	x ² +y ² ,z ²
A _{2g}	Γ ₂ +	1	1	-1	1	1	-1	Jz
Eg	Г ₃ +	2	-1	0	2	-1	0	$(x^2-y^2,xy),(xz,yz),(J_x,J_y)$
A _{1u}	Γ ₁ -	1	1	1	-1	-1	-1	
A _{2u}	۲ ₂ -	1	1	-1	-1	-1	1	z
Eu	Г ₃ -	2	-1	0	-2	1	0	(x,y)

$$(1)$$
 $n = \sqrt{\epsilon} = n_1 + in_2$

(2)
$$\epsilon = n_1^2 - n_2^2 + i2n_1n_2 = \epsilon_1 + i\frac{4\pi\sigma}{\omega} = \epsilon_1 + i\epsilon_2$$

(3)
$$\mathcal{R}(\omega) = \left|\frac{n(\omega) - 1}{n(\omega) + 1}\right|^2 = \left|r(\omega)e^{i\theta(\omega)}\right|^2 \implies ln(\mathcal{R}(\omega)) = 2ln(r(\omega))$$

$$(4) \quad r(\omega)e^{i\theta(\omega)} = \frac{n_1(\omega) + in_2(\omega) - 1}{n_1(\omega) + in_2(\omega) + 1} \qquad \Longrightarrow \begin{cases} n_1(\omega) = \frac{1 - r^2(\omega)}{1 + r^2(\omega) - 2r(\omega)cos(\theta(\omega))} \\ n_2(\omega) = \frac{2r(\omega)sin(\theta(\omega))}{1 + r^2(\omega) - 2r(\omega)cos(\theta(\omega))} \end{cases}$$

(5) Kramers-Krönig
$$\Rightarrow \begin{cases} ln(r(\omega)) = \frac{2}{\pi} \int_0^\infty \frac{\Omega \theta(\Omega) - \omega \theta(\omega)}{\Omega^2 - \omega^2} d\Omega \\ \theta(\omega) = -\frac{2\omega}{\pi} \int_0^\infty \frac{ln(r(\Omega)) - ln(r(\omega))}{\Omega^2 - \omega^2} d\Omega \end{cases}$$

 $\mathcal{R}(\omega) \stackrel{(3)}{\Rightarrow} ln(r(\omega)) \stackrel{(5)}{\Rightarrow} [r(\omega), \theta(\omega)] \stackrel{(4)}{\Rightarrow} [n_1(\omega), n_2(\omega)] \stackrel{(2)}{\Rightarrow} [\epsilon_1(\omega), \epsilon_2(\omega)]$

Metal-Insulator Transition

Metallization under pressure

Drop of reflectance above the gap New energy scale for the gap : 73meV Strong electron-phonon coupling

Summary

- * Sensitive to « translational » modes u
- Complementary with Raman for centrosymmetric crystals (g modes : Raman, u modes : IR)
- * Polarization dependance of absorption
- * Give access to :
 - Gap energy scale
 - Optical phonon modes
 - Optical conductivity, dielectric constant

Selection rule

Interaction light-electron :

$$\begin{aligned} \mathcal{V}(\vec{r}) &= \frac{q}{m_e c} \vec{p}.\vec{A}(\vec{r}) + \frac{q^2}{m_e c^2} \vec{A}^2 \\ \vec{A} &= A \vec{\epsilon} e^{-i \vec{k} \cdot \vec{r}} = A \vec{\epsilon} (1 - i \vec{k}.\vec{r} + ...) \end{aligned}$$

First order in **p**.**A** : dipole operator : $\mathcal{V} \propto \vec{p}.\vec{\epsilon}$ $\Delta L = 1$ $\Delta S = 0$

Second order in **p.A** : quadrupole operator : $\mathcal{V} \propto -i \left(\vec{p}.\vec{\epsilon} \right) \left(\vec{k}.\vec{r} \right)$ $\Delta L = 0, 2$

Only at high energy (typically more than \sim 7keV)

Core-hole Spectroscopy

Creation of a 1s core hole : K-edge

Core-hole Spectroscopy

Creation of a 1s core hole : K-edge

Creation of a 2s core hole : L₁-edge

Energy **FOOOOOO-**EF $-3d_{5/2}$ M₅ $3d_{3/2}$ M₄ $3p_{3/2} M_3$ $3p_{1/2} M_2$ \mathbf{M}_1 $-2p_{3/2}L_3$ 2p1/2 L2 L 28 K

Core-hole Spectroscopy

Creation of a 1s core hole : K-edge Creation of a 2s core hole : L₁-edge Creation of a 2p_{1/2} core hole : L₂-edge

Core-hole Spectroscopy

Creation of a 1s core hole : K-edge Creation of a 2s core hole : L₁-edge Creation of a $2p_{1/2}$ core hole : L₂-edge Creation of a $2p_{3/2}$ core hole : L₃-edge

Core-hole Spectroscopy

Energy

ECOCO-EF $5/2 M_5$ $3d_{3/2} M_4$ $3p_{3/2} M_3$ 19 M2 M_1 p3/2 L3 $2p_{1/2}$ L₂ L 2sΚ

Creation of a 1s core hole : K-edge Creation of a 2s core hole : L_1 -edge Creation of a $2p_{1/2}$ core hole : L_2 -edge Creation of a $2p_{3/2}$ core hole : L_3 -edge

Edges energy is element specific :

Cu K-edge : 8 979 eV

Core-hole Spectroscopy

Energy $\gamma \gamma \gamma \gamma - E_F$ $1_{5/2} M_5$ d_{3/2} M₄ $3p_{3/2} M_3$ 19 M2 M_1 p_{3/2} L₃ $2p_{1/2}$ L₂ Lı K

Creation of a 1s core hole : K-edge Creation of a 2s core hole : L_1 -edge Creation of a $2p_{1/2}$ core hole : L_2 -edge Creation of a $2p_{3/2}$ core hole : L_3 -edge

Edges energy is oxydation-state specific :

Atom environment

Environment change the spectra shape Enhancement of pre-edge peak for non centrosymmetric sites

Superconductivity

As K-edge. 1s —> 4p

As p orbital involvement in phase transition : $(d_{Fe}+p_{As})$

Summary

Chemical/Element selectivity

Orbital selectivity (via energy and polarization)

* Give access to :

- Direct empty DOS for K-edge
- Information on DOS for L-edge (but more tricky...)
- Symmetry of the absorbing atom site
- Beyond this lecture : polarization effects, Charge Transfer Multiplet (L-edge)

Emission lines

 $K_{a1}: 2p_{3/2} \longrightarrow 1s$

Emission lines

 $K_{a1}: 2p_{3/2} \longrightarrow 1s$

Emission lines

$$K_{\alpha 1}: 2p_{3/2} \longrightarrow 1s K_{\alpha 2}: 2p_{1/2} \longrightarrow 1s K_{\beta 1}: 3p_{3/2} \longrightarrow 1s K_{\beta 3}: 3p_{1/2} \longrightarrow 1s$$

Emission lines

Energy

 $K_{\alpha 1}: 2p_{3/2} \longrightarrow 1s$ $K_{\alpha 2}: 2p_{1/2} \longrightarrow 1s$ $K_{\beta 1}: 3p_{3/2} \longrightarrow 1s$ $K_{\beta 3}: 3p_{1/2} \longrightarrow 1s$

Emission energy is element specific :

Emission lines

Energy

Κ

 $K_{\alpha 1}: 2p_{3/2} \longrightarrow 1s$ $L_{\alpha 1}:$ $K_{\alpha 2}: 2p_{1/2} \longrightarrow 1s$ $L_{\alpha 2}:$ $K_{\beta 1}: 3p_{3/2} \longrightarrow 1s$ $L_{\alpha 2}:$ $K_{\beta 3}: 3p_{1/2} \longrightarrow 1s$ $L_{\beta 1}:$

 $L_{a1}: 3d_{5/2} \longrightarrow 2p_{3/2}$ $L_{a2}: 3d_{3/2} \longrightarrow 2p_{3/2}$

 $L_{\beta 1}: 3d_{3/2} \longrightarrow 2p_{1/2}$

Cu $L_{\beta 1}$: 950 eV

Emission energy is element specific :

Cu L_{a1} : 929 eV Cu L_{a2} : 929 eV

2 photons process

Interaction light-electron :

$$\mathcal{V}(\vec{r}) = \frac{q}{m_e c} \vec{p}.\vec{A}(\vec{r}) + \frac{q^2}{m_e c^2} \vec{A}^2$$

Second order : XAS : $\mathcal{V}(\vec{r}) = \frac{q}{m_e c} \vec{p}.\vec{A}(\vec{r})$ XES : $\mathcal{V}(\vec{r}) = \frac{q}{m_e c} \vec{p}.\vec{A}(\vec{r})$

Intermediate state :

state : $\begin{bmatrix}
 Intermediate state \\
 (no photon)
 \\
 \mathcal{V}^{(2)}(\omega) = \left(\frac{q}{m_e c}\right)^2 \sum_n \frac{\langle f | \vec{p}. \vec{A_f} | n \rangle \langle n | \vec{p}. \vec{A_i} | i \rangle}{E_i - E_n + \hbar \omega - i \frac{\Gamma_n}{2}}$

$$\frac{\partial \sigma}{\partial \Omega_{f}} = r_{0}^{2} \frac{k_{i}}{k_{f}} \left[\vec{\epsilon_{i}} \cdot \vec{\epsilon_{f}} + \frac{1}{m} \sum_{n} \frac{\langle f \vec{p} \cdot \vec{\epsilon_{f}} n \rangle \langle n | \vec{p} \cdot \vec{\epsilon_{i}} | i \rangle}{E_{i} - E_{n} + \hbar \omega - i \frac{\Gamma_{n}}{2}} \right]^{2} \frac{\mathbf{Dipolar}}{\mathbf{Dipolar}}$$

Direct RIXS

RIXS = XAS + XES Probes valence and conduction states directly

Indirect RIXS

RIXS = XAS + recombination + XES

Experimental Setup

X-ray Diffraction Probability 0.01

Fluorescence Probability 0.001

RIXS Probability 0.00001

Heavy fermion compound

Yb L₃-edge. 2p —> 5d

Valence fluctuations as pairing mechanism?

Electron-phonon coupling constant

Sensitivity to phonons through electron : several harmonics κ-(BEDT-TTF)₂Cu₂(CN)₃

dd excitations

Crystal Field of Ti (3d1) L3-edge (450eV)

Summary

- Chemical/Element selectivity
- Orbital selectivity (Incident and Final Energy, Polarization)

Small sample size required (< 1mm²)

- Gives access to:
 - electron-phonon coupling
 - valence state and fluctuations
 - dd excitations

 Beyond this lecture : Polarization effects, Multipolar extension, Interference terms...

End of part I

(but part II is coming...)

Victor Balédent Laboratoire de Physique des Solides Université Paris-Sud, Orsay