
Introduction of many-body physics of fermions
and bosons

Master 2 ICFP

Pascal Simon and Michele Casula

25 février 2021



Table des matières

1 Introduction 4
1.1 Kinetic energy (band structure) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Band structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Tight-binding model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Interactions and Fermi liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Some elementary notions of the renormalisation group . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Goal of the first half of this course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Equilibrium single-particle Green functions 9
2.1 Definition of the Green functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Properties of the Matsubara Green function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Periodicity and Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Discontinuity in τ = 0 and particle number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Free fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Single-level Hamiltonian (see exercice sheet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Diagonalisation and relations with the Green functions . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 The resonant level model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Spectral representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Lehmann representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Hilbert transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Sum over Matsubara frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 2-particle correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Feynman diagrams 22
3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Interaction representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Some technical remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Wick Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 The theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Its Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Use of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Perturbative expansion of the Green functions and Feynman diagrams . . . . . . . . . . . . . . . . . 25
3.6 Feynman rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Diagrammatic approach of the resonant level model . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.8 Electron-phonon interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8.1 Electronic self-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8.2 Electronic Green functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8.3 Phononic Green functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Introduction to quantum impurity models 38
4.1 Anderson and Kondo models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Physical Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Magnetic impurities in a metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Theoretical motivation : Dynamical mean field theory . . . . . . . . . . . . . . . . . . . . . . 39

2



TABLE DES MATIÈRES 3

4.3 Anderson model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 Atomic limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Summary of the main results related to the Kondo model . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1 Perturbative approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.2 Renomalization group and universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.3 Multi-channel Kondo model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Back to the Anderson model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.1 U = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.2 U 6= 0, V = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.3 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Kondo effect in quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6.1 Current through a quantum dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6.2 Anderson model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



Chapitre 1

Introduction

Ideally, we would like to solve the Schrödinger equations− ~2

2m

N∑
j=1
∇2
j +

∑
i<j

V (|ri − rj |) +
∑
j

U(ri)

Ψ = i~
∂Ψ
∂t
, (1.1)

where Φ ≡= Ψ(r1, · · · , rN ). This would allow us to determine both the eigenfunctions and eigenspectrum of the
many-body Hamiltonian. Why trying to solve such problem ? Beyond the academic problem, we may have in mind to
deal charge fermions interacting with a Coulomb potential V (r) = q2/(4πε0r) where q denotes the charge. Therefore
solving the above Schrödinger equation would allow us to describe accurately interacting electrons in a solid or in a
condensed matter phase. We may have also in mind to describe the problem of Rydberg atoms in a trap potential.
The 2-body interacting would then be a long-range dipolar interaction V (r) ∼ 1/r3).

If we have an electromagnetic field, we need to substitute

∇ −→ ∇− iqA (1.2)
U(r) −→ U(r) + qΦ(r), (1.3)

where A is the gauge vector and Φ the electric potential.
Obviously, in a typical condensed matter system, with N ∼ 1023, the Hilbert space grows exponentially too fast

to hope to solve such Schrödinger equation.
In a cold atomic system which has only a few atoms trapped in a low-dimensional potential, diagonalizing directly

the Hamiltonian may actually be a good way to approach this problem. At least, this may allow to calibrate the
experiment in some range of parameters. Beyond what is presently achievable numerically, cold atoms trapped in
an optical potential can then offer an interesting platform for in situ quantum simulations.

However, we learnt fom statistical physics, that we do not need to solve the equation of motion of N bodies to
be able to predict some macroscopic emergent behaviour. Can we expect a similar strategy to hold here ?

Although the notion of emergence is certainly playing a major role in modern quantum many-body physics, for
a general many-body problem this is difficult to predict based only on symmetries and dimensionality what kind
of low-energy physics is about to emerge. This is typically problem-dependent. This is why many numerical tools
have been fastly developing over the past decades to tackle these kinds of problems.

The strategy developed in this lecture is rather pedestrian. We need a known starting point. We will therefore
start with the non-interacting problem and swich on the interactions. We will then learn how to treat the interaction
perturbatively in order to compute some observables. This will allows us to indroduce the Green function formalism.
The second part of the lecture will be devoted to some modern numerical approach to many-body phsyics.

1.1 Kinetic energy (band structure)
1.1.1 Band structure

Let us consider free particles in a box with periodic boundary conditions (V = U = 0 above). Using translation
invariance, the Hamiltonian is diagonal in the plane-wave basis and can be written in a second-quantized form as

H =
∑
k,σ

ε(k)c†k,σck,σ, (1.4)

4



1.1. KINETIC ENERGY (BAND STRUCTURE) 5

with ε(k) = ~2k2/2m the dispersion relation. Here c†k,σ creates a particle with momentum k and spin σ. The symbol
σ denotes typically the spin quantum number but can also encapsulate extra quantum numbers. For N fermions,
the ground state |GS〉 is obtained by filling up the N lowest energy states :

|GS〉 ≡ c†kp↑c
†
kp↓ · · · c

†
k1↑c

†
kp↓|0〉, (1.5)

assuming N = 2p and ε(k1) < · · · < ε(kp). This approach can be obviously extended to the case where we do have
many bands. Although the Hamiltonian being non-interacting, classifying all possible non-interacting hamitlonians
has received a considerable interest in the past decade and our understanding of band structure has been completely
revolutionized with the emergence of topology in Bloch space. However, this is another field which I will not touch
(see e.g. [1]).

Before closing this paragraph, let us remind the behaviour of the density of states as a function of the dimension
d. The density of particles is defined by n = N/V where N = 〈GS|N̂ |GS〉.

Let us first consider d = 3.

N = 〈GS|
∑
k,σ

nk,σ|GS〉 ≈
V

(2π)3

∑
σ

kF∫
0

dk(4πk2) = V k3
F

3π2 . (1.6)

We thus obtain n = k3
F

3π2 . For a quadratic dispersion relation ε = ~2k2

2m , we can therefore the energy dependence of
the density as

n(ε) = 1
3π2 (2m

~2 )3/2ε3/2. (1.7)

Therefore, for a 3D metal, the density of states ρ(ε) = dn/dε (per unit volume) scales as ρ(ε) = 1
2π2 ( 2m

~2 )3/2ε1/2.
Similarly, one can calculate the ground state energy as E0

3D = 〈GS|
∑

k,σ
~2k2

2m |GS〉 = 3
5NεF . Hence, the ground

state energy per particle scales as E0
3D/N ∼ n2/3. For a typical metal, n ∼ 1029 m−3, kF ∼ 13.6 nm−1 and

λF ∼ 0.46nm which implies 2-3 lattice distance.
One can repeat these calculations in d = 2. The density of particles reads as n(ε) = m

π~2 ε which implies a constant
density of states. Similarly, one shows that the ground state energy per particle scales as E0

2D/N ∼ n.
Exercice : Perform the same analysis as above with a linear dispersion relation instead of a quadratic one.

1.1.2 Tight-binding model
We use above a continuum limit formulation. However in a solid, electrons are attached to an atom. We may

therefore use a tight-binding formulation. A one-dimensional tight-binding hamiltonian reads

Ĥ = −t
∑
j

c†jcj+1 + h.c.), (1.8)

where the index j corresponds to a lattice site. We omit the spin index to lighten notations. In Fourier space, we
introduce ck such that

cj = 1√
N

∑
k

cke
ik·rj , (1.9)

such that
Ĥ =

∑
k

εkc
†
kck, (1.10)

where
εk = −2t cos ka.

Let us consider the case where εF = 0. This corresponds to half-filling where µ = εF = 0. The low-energy
excitations of such a Hamiltonian are confined near the Fermi level namely for k ' kF = ± π

2a . Linearizing the
dispersion relation, we have in the limit (k − kF )a� 1 (see Fig. 1.1)

εk = 2t sin [(k − kF )a]
' 2ta(k − kF ).

Therefore, in the low-energy approximation, we have linearized the spectrum to write around k > 0

εk = ~vF (k − kF ). (1.11)
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where ~vF = 2ta. We obtain the same result for k < 0 linearizing around −kF . We have thus obtained an effective
Hamiltonian valid at low-energy, i.e. |ε| � t, which does not depend on the details occuring at high energy.
Conversely, this also implies that observables mesured in this low-energy range do not depend on the high-energy
details of the band structure. This is important since observables may become universal in the low-energy regime
and therefore worth being studied.

Notice the emergence of some Lorentz invariance in this low-energy Hamiltonian which is not present in the
initial tight-binding Hamiltonian. Indeed, quite often the symmetries may be larger at low-energy than in the initial
starting Hamiltonian.

(a) (b)

Figure 1.1 – (a) Initial dispersion of the system with bandwidth D = 4t. Near the Fermi level, we can linerarize
this spectrum (b) a new dispersion relation valid only at low energy.

1.2 Interactions and Fermi liquids
Lt us now consider the Hamiltonian

Ĥ =
∑
k,σ

εkc
†
k,σck,σ + 1

2V
∑

q,k1,k2,σ1,σ2

V(q)c†k1+q,σ1
c†k2−q,σ2

ck2,σ2ck1,σ1 , (1.12)

where the second term is the Fourier transform of the Hamiltonian

1
2

∫ ∑
σ1,σ2

dr1dr2V(|r1 − r2|)ψ̂†σ1
(r1)ψ̂†σ2

(r2)ψ̂σ2(r2)ψ̂σ1(r1).

Such interaction can be the Coulomb one in which case

VCoulomb(q) = e2

ε0q2 , VCoulomb(r) = e2

4πε0r
.

in D = 3. In the case of Copper, its electronic orbital structure is 3d104s1. This implies one conduction electron par
atom. Its average density is ne = 8, 4.1022cm−3 which implies an average distance between electron d = n

−1/3
e =
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2, 3Åand therefore an average Coulomb interaction VCoulomb(d) = e2

4πε0d
' 6, 3eV ! This correspodns to a huge energy

scale (remember that 1eV ∼ 12000K). Therefore we would expect that a piece of Copper at room temperature
would be in a correlated state dominated by the Coulomb interaction.

This rough esimate casts some serious doubt about our global strategy. Indeed, one may legitimately worry about
treating the interaction as a perturbation around the free case. Actually, the above argument is single-particle like.
First, let us estimate the ratio between the potential energy and the kinetic energy, Epot/EKin, for a given density
n. The Coulomb energy scales as VCoulomb(d̄) ≈ VCoulomb(n−1/d) ∼ e2n1/d. Therefore

Epot
EKin

∝ n−1/d. (1.13)

This implies that the larger the density, the more the kinetic (non-interacting) term dominates over the two-body
Coulomb interaction. This estimation is a direct consequence of the Pauli principle. In the infinite density limit,
the interactions are negligible and therefore this limit is a good starting point for perturbation theory.

Our piece of copper turns out to be a good metal well described by the Fermi liquid theory. Indeed, specific
heat measurments are actually linear in T , while the susceptibility is constant. This implies that there exists an
effective low-energy theory for this complicated model where interactions between the excitations (we use the term
quasiparticles) are weak. This is valid in the low-temperature range such that kBT � Ecoh where Ecoh denotes
some energy scale which will be introduced further in the course. All the effect of the initial interactions will actually
be hidden in some parameters of the Fermi liquid model such as m∗, F0, F1, · · · .

The Fermi liquid theory possess a universal character in the sense that different high energy models share the
same low-energy description. The relation between the high energy model and the low-energy Fermi liquid model
is provided via the renormalisation group (RG) approach which connnects these models all together. We will apply
this RG tool on the Anderson model [2].

1.3 Some elementary notions of the renormalisation group
The renormalisation group is a machinery enabling to connect high-energy degrees of freedom to low-energy

ones. This is hard to implement in practice and we need to resort to a few approximation schemes. In order to
obtain the low-energy observables, we need to have access to the solutions of the model at all energies. The idea of
the renormalisation group is to integrate all high energy modes in order to obtain a low-energy model.

Figure 1.2 – Using iterative steps, the renormalisation group consists in decreasing the bandwidth by successive
integration of the high-energy degrees of freedom. We stop when we arrive at fixed point given by an effective
bandwidth given by ΛN .

Let us start with Ĥ(Λ) where Λ is typically the bandwidth (see Fig. 1.2). The partition function of the system
reads

Z = Tr[e−βĤ ].
The idea of the renormalisation group is to separate this trace into two parts : on one hand the low-energy modes
(l.e.m.) and the high-energy modes (h.e.m.) :

Z = Trl.e.m.Trh.e.m.e−βĤ(Λ) = Trl.e.m.e−βĤ(Λ1),

and to iterate such procedure until a fixed point is reached at a scale ΛN .. Though such procedure may look
simple, the catch hides in the fact that Ĥ(Λ1) has in general a much more complicated and different form than
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Ĥ(Λ) (typically n-particles processes are generated). Therefore, we are obliged to truncate some terms in Ĥ(Λ1).
However, at low-energy only the 2-particles processes matter (i.e are relevant) near the Fermi liquid fixed point
which justifies a fortiori the truncation procedure.

If we consider the average value of an observable before renormalisation

〈Θ̂〉 = 1
Z
Tr
(

Θ̂e−βĤ(Λ)
)
,

after renormalisation, this average value is computed using

〈Θ̂〉 = 1
Z
Trl.e.m

(
Θ̂e−βĤ(ΛN )

)
,

which is much more simple to calculate.
Obviously and fortunately, the low-energy physics of many interacting fermions does not always reduces to

a Fermi liquid theory. There are other fixed points such as the Mott insulator which corresponds to an insulator
driven by interactions. In one-dimension, the Fermi liquid paradigm breaks down. Technically speaking, the sucessive
integration of high-energy degrees of freedom is plagued with divergences. Another paradigm, called Luttinger liquid,
naturally emerges.

1.4 Goal of the first half of this course
The goal of the first part of this course is to calculate perturbatively (in the interactions) some physical obser-

vables. In that respect, we need to introduce the formalism of Green functions and the notion of self-energy.



Chapitre 2

Equilibrium single-particle Green
functions

From now on, we are treating systems of N -particles which can be either fermions or bosons. The chemical
potential is noted as µ while the temperature is T = 1

β (we take kB = 1). We will follow the book of Bruus and
Flensberg [3].

The expectation value of a quantum operator is denoted as :

〈Â〉 = 1
Z
Tr(e−βĤ

′
Â),

where the partition function is defined as Z = Tr(e−βĤ′). The Hamiltonian Ĥ ′ is defined as Ĥ ′ = Ĥ − µN̂ , i.e.
in the grand-canonical ensemble. In what follows, if not stated otherwise, we will always assume such statistical
ensemble, and the prime will be omitted. When possible, we will use a single index a for all degrees of freedom
of the system. Hence, the index a can denote ~k, σ, ~x, . . . .The creation and destruction operators obey the usual
relations :

{ĉa, ĉ†b} = δab fermions (2.1)[
b̂a, b̂

†
b

]
= δab bosons (2.2)

It may be more convenient to introduce the factor ζ, such that ζ = 1 for bosons and ζ = −1 for fermions. The
commutations relations thus read

[ψ̂a, ψ̂†b ]ζ = ψ̂aψ̂
†
b − ζψ̂

†
b ψ̂a = δab. (2.3)

2.1 Definition of the Green functions
Let us introduce the following three Green functions. The retarded Green function is defined by

GRab(t− t′) = −iθ(t− t′) 〈[ψ̂a(t), ψ̂†b(t′)]ζ〉 (2.4)

where the time dependence of the field operator is via the Heisenberg representation. This means

Â(t) = eiĤtÂe−iĤt.

Exercice Show that GRab(t− t′) is indeed a function of the t− t′.

The second Green function is the time-ordered one Green function

GFab(t− t′) = −i 〈Tt
(
ψ̂a(t)ψ̂†b(t′)

)
〉 (2.5)

where we introduced the time-ordered operator Tt defined by

Tt(A(t)B(t′)) = θ(t− t′)Â(t)B̂(t′) + ζABθ(t′ − t)B̂(t′)Â(t),

9



10 CHAPITRE 2. EQUILIBRIUM SINGLE-PARTICLE GREEN FUNCTIONS

where ζAB = −1 if Â and B̂ are fermionic operators and +1 if they are bosonic operators.
Finally the third Green function we want to introduce is called the Matsubara Green function which is defined

in imaginary time. Like complex numbers, the imaginary time or Euclidian time is a technical trick where time and
frequency are imaginary. We will see the advantages of such trick later. Let us define the imaginary time evolution
by analytic continuation as

Â(τ) = eĤτ Âe−Ĥτ , τ ∈ [0, β]. (2.6)

Please pay attention that
Â(τ)† = Â†(−τ) 6= Â†(τ).

The Matsubara Green function is then defined by :

GMab(τ − τ ′) = −〈Tτ
(
ψ̂a(τ)ψ̂†b(τ ′)

)
〉 , , (2.7)

where as previously, Tτ [Â(τ)B̂(τ ′)] = Â(τ)B̂(τ ′) if τ > τ ′, and Tτ [Â(τ)B̂(τ ′)] = ζABB̂(τ ′)Â(τ) if τ < τ ′. Note
that τ ∈ [0, β] garenties the convergence of the Green function GMab(τ). One may wonder what is the use of such
Green function. We will come back to it later when analyzing its properties in details. In short, define the correlator
CAB(t, t′) = −〈A(t)B(t′)〉 such that CRAB = iθ(t− t′)(CAB(t, t′)− ζCBA(t′, t)). Coming back to the definition of the
expectation values,

CAB(t, t′) =− 1
Z
Tr
(
e−βHA(t)B(t′)

)
= − 1

Z
Tr
(
e−βHeiHtAe−iH(t−t′)Be−iHt

′
)

(2.8)

=− 1
Z
Tr
(
e−βHeHτAe−H(τ−τ ′)Be−Hτ

′
)
. (2.9)

We have used the Heisenberg representation and assumed the Hamiltonian H to be time-independent. The main
advantage of this formulation can be seen in the later expression where the density operator and the time evolu-
tion can be treated on an equal footing. Therefore such formulation will be quite convenient to deal with finite
temperature Green functions and the calculations of finite T observables.

At T = 0, GF can be developed using perturbation theory and Feynman diagrams while GR cannot. At T 6= 0,
GM can also be computed using perturbation theory and Feynman diagrams while GR cannot. GR will be obtained
by an analytical continuation of GM . Moreoevr, the function ρab will be derived from GR as follows

ρab = −
1
π
=GRab(ω). (2.10)

The spectral function encodes all the information on the excitations spectrum of the system.
Finally, it is worth emphasizing that the retarded Green function is the most physical one since it naturally

emerges in linear response theory as the response to a perturbation done earlier in time. However, as we just saw,
the latter can not be computed directly and we need tu use the other Green functions as some intermediate steps
to obtain it though these other Green functions are not physical.

2.2 Properties of the Matsubara Green function

2.2.1 Periodicity and Fourier series
The Matsubara Green function is a function of the difference between the imaginary times (τ − τ ′). Therefore if

0 ≤ τ, τ ′ ≤ β, we have −β ≤ τ − τ ′ ≤ β, which implies GMab varies over an interval of width 2β. We can then extend
GMab for real values of τ − τ ′ by continuity and using the 2β periodicity (see Fig. 2.1). The function GMab is thus 2β
periodic in general

GMab(τ + 2β) = GMab(τ). (2.11)

A consequence of this periodicity is the ability to expand it in Fourier series.
Another property of the Matsubara Green function is the following :

GMab(τ + β) = ζGMab(τ), (2.12)
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Figure 2.1 – The Green function GMab(τ) has a 2β periodicity, and according to the nature of the particules
(fermionic or bosonic), the Matsubara Green function is actually β-antiperiodic (fermions) or β-periodic (bosons)

implying a periodicity β for bosons and an antiperiodicity β for fermions. To show this property, let us assume
τ ∈ [−β, 0], such that τ + β > 0

GMab(τ + β) = − 1
Z
Tr
(
e−βĤTτ (ψ̂a(τ + β)ψ̂†b(0))

)
.

With these conditions on τ and β, we can suppress the time-ordering operator and write

GMab(τ + β) = − 1
Z
Tr
(
e−βĤe(τ+β)Ĥ ψ̂ae

−(τ+β)Ĥ ψ̂†b

)
.

This expression can be simplified

GMab(τ + β) = − 1
Z
Tr
(
eτĤ ψ̂ae

−(τ+β)Ĥ ψ̂†b

)
,

and using the property of the trace, we get

GMab(τ + β) = − 1
Z
Tr
(
e−βĤ ψ̂†be

τĤ ψ̂ae
−τĤ

)
,

where we can identify ψ̂†b(0) and ψ̂a(τ). This thus allows us to rewrite the expression as

GMab(τ + β) = − ζ
Z
Tr
[
e−βĤTτ (ψ̂a(τ)ψ̂†b(0))

]
= ζGMab(τ).

We can perform a similar calculation if τ > 0. Therefore, this shows the property of periodicty or antiperiodicity of
GMab(τ).

The Matsubara Green function can be expanded in Fourier series as

GMab(τ) = 1
β

∑
ωn

e−iωnτGMab(iωn), (2.13)

where the Matsubara frequencies ωn are given by

eiωnβ = ζ. (2.14)

We thus have ωn = πT (2n+ 1) for fermions and ωn = πT2n for bosons.
We can reverse the Eq. (2.13), to obtain

GMab(iωn) =
∫ β

0
dτGMab(τ)eiωnτ . (2.15)

Exercice Show that

GMab(iωn) =
∫ β/2

−β/2
dτGMab(τ)eiωnτ .
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2.2.2 Discontinuity in τ = 0 and particle number
As the figure 2.1 may indicate, the Matsubara Green function has a singular behavior in τ = 0. One can show

that
GMab(0+)−GMab(0−) = −δab. (2.16)

Indeed,
〈Tτ ψ̂a(0+)ψ̂†b(0)〉 = 〈ψ̂aψ̂†b〉 , 〈Tτ ψ̂a(0−)ψ̂b(0)〉 = ζ 〈ψ̂†b ψ̂a〉 .

Substracting these two expressions, we obtain

GMab(0+)−GMab(0−) = −[〈ψ̂aψ̂†b〉 − ζ 〈ψ̂
†
b ψ̂a〉]

= −〈ψ̂aψ̂†b − ζψ̂
†
b ψ̂a〉

= −δab.

Another important property of the Matsubara Green function is its large frequency behavior :

lim
ωn→+∞

GMab(iωn) = δab
iωn

. (2.17)

For fermions, the number of particules (electrons) in the state a is given by

na = 〈ψ̂†aψ̂a〉 = GMaa(0−),

(Similarly the number of particles with momentum k is given by GMk (0−)), and conversely, the number of anti-
particles (holes) is given by

na − 1 = −〈ψ̂aψ̂†a〉 = GMaa(0+).

2.3 Free fermions
We are interested here in free fermions described by a quadratic Hamiltonian.

2.3.1 Single-level Hamiltonian (see exercice sheet)
Let us consider the simplest possible case, a single level Hamiltonian described by

Ĥ = εĉ†ĉ,

Exercice Compute the following Green functions GM (τ), GM (iωn) and GR(ω)

The Matsubara Green function is given by

GM (τ, τ ′) = −〈Tτ (ĉ(τ)ĉ†(τ ′))〉 .

The evolution of an operator in imaginary time is given by

Â(τ) = eĤτ Âe−Ĥτ ,

and therefore the operator ĉ(τ) satisfies the following differential equation

∂τ ĉ(τ) = eĤτ [Ĥ, ĉ]e−Ĥτ .

Using the anticommutation relations, we thus obtain ∂τ ĉ(τ) = −εĉ(τ), and therefore ĉ(τ) = e−ετ c. The Hilbert
space of this system reduces to the states |0〉 and |1〉 with 0 or 1 particles respectively. The eigenvalues of Ĥ are 0
and ε associated with these above eigenstates.

With the expression of ĉ(τ), we can compute direcly the Matsubara Green function. For τ > 0, we have

GM (τ) = GM (τ, 0) = −〈ĉ(τ)ĉ†(0)〉 = −e−ετ 〈ĉĉ†〉 .
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The expectation value of the number operator reads

〈ĉĉ†〉 = 1− 〈ĉ†ĉ〉 = 1
1 + e−βε

,

and we thus get

GM (τ) = −e−ετ

1 + e−βε
τ > 0,

and using fermionic anticommutation relations, we infer for τ < 0 that

GM (τ) = e−ετ

1 + eβε
.

This function is shown in Fig. 2.2.

Figure 2.2 – Matsubara Green function for free fermions.

Furthermore, the value of GM (τ) in 0+ and β− take the following simple expressions

GM (τ = 0+) = −(1− nF (ε)) GM (τ = β−) = −nF (ε),

where nF is the Fermi Dirac distribution function.
Let us now compute the Fourier transform GM (iωn) of GM (τ) :

GM (iωn) =
∫ β

0
dτGM (τ)eiωnτ =

∫ β

0
dτ
−e−ετ

1 + e−βε
eiωnε

= − 1
1 + e−βε

∫ β

0
eτ(iωn−ε) = − 1

1 + e−βε

[
eβ(iωn−ε) − 1
iωn − ε

]
.

Using the definition of the Matsubara frequencies in (2.14), we can simplify this ersult to simply write

GM (iωn) = 1
iωn − ε

Let us now compute the retarded Greenfunction GR(t) which reads

GR(t) = −iθ(t) 〈[ĉ(t), ĉ†]ζ〉 .
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The time evolution of ĉ can be determined following the same steps as for the imaginary time. We thus get
∂tĉ(t) = −iεĉ(t), and therefore ĉ(t) = e−iεtĉ (which corresponds to the analytic continuation of ĉ(τ)). We obtain

GR(t) = −iθ(t)e−iεt 〈{ĉ, ĉ†}〉 = −iθ(t)e−iεt.

In order to determine GR(ω), we take the Fourier transform of the previous expression

GR(ω) =
∫ +∞

−∞
dtGR(t)eiωt = −i

∫ +∞

0
ei(ω−ε)t. (2.18)

This integral being divergent, we introduce an infinitesimal regulator iη (with η > 0) such that

GR(ω) = lim
η→0+

−i
∫ +∞

0
ei(ω−ε)te−ηt

= lim
η→0+

1
iη + ω − ε

.

The retarded Green function possesses a pole in the lower half-plane. Notice that this is a general property.
Indeed, suppose we start from the Fourier transform of

GR(t) =
+∞∫
−∞

dω

2πG
R(ω)e−iωt,

and extend ω into the complex plane, namely let us consider GR(ω) −→ GR(z). We assume GR(z) to be analytical
in the upper half complex plane. For t > 0, we need to close the contour over the lower half plane to make the
integral convergent. Therefore, GR(t) is dominated by the zeroes of GR(z). Instead, if t < 0, we need to close the
contour in the upper half plane and therefore GR(t < 0) = 0. This implies that GR(t) ∝ θ(t). We thus have an
equivalence between the following two properties

GR(t) ∝ θ(t) ⇐⇒ GR(z) analytical in the upper halfplane. (2.19)

Coming back to the retarded Green function, The retarded and Matsubara Green functions are related within
each other using a simple analytical continuation

GM (iωn → ω + i0+) = GR(ω) .

The previous relation between GR(ω) and GM (iωn) is also valid for bosons and is actually quite general and relies
on the existence of a spectral decomposition.

The density of states ρ(ω) is obtained via ρ(ω) = − 1
π=G

R(ω). Using 1
x+i0+ = PP 1

x − iπδ(x), we simply get

ρ(ω) = δ(ω − ε).

2.3.2 Diagonalisation and relations with the Green functions
We treated above the case of a single level. Let us extend it to free fermions described by a general quadratic

Hamiltonian
Ĥ =

∑
αβ

ĉ†αhαβ ĉβ . (2.20)

h is a Hermitian matrix (i.e. h∗βα = hαβ). We can find some unitary transform h = UΛU†, where U is some unitary
matrix (UU† = U†U = 1) and where Λ is a diagonal matrix with eigenvalues noted λi. We introduce the notation

~̂c =


...
ĉα
...

 ,

Under such unitary transform, we define new vectors ~̂c′ = U†~̂c or in composants ~̂c
′†
β = ~̂cβ′Uβ′β .
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Exercice Check these new operators ~̂c′ satisfy the usual anticommutation relations.
The Hamiltonian in Eq. (2.16) can be thus written as

Ĥ =
∑
α

λαĉ
′†
α ĉ
′
α.

In this form, the Hamiltonian is a simple extension of the single level Hamiltonian we dealt in Sec. 2.3.1.
The Matsubara Green function GMαβ(τ) is defined by

GMαβ(τ) = −〈Tτ ĉα(τ)ĉ†β(0)〉 .

To calculate this Green function, we then use the unitary transform

GMαβ(τ) = −〈Tτ ĉ′α′(τ)ĉ
′†
β′(0)〉Uαα′U†β′β ,

where the Einstein convention is used (i.e. repetition of two indices imply their summation). We calculated this
expectation value previously, namely

〈Tτ ĉ′α′(τ)ĉ
′†
β′(0)〉 = δα′β′

−e−λα′τ

1 + e−βλα′
, for τ > 0.

The Fourier transform of this expression gives

GMαβ(iωn) = Uαα′
1

iωn − λα′
U†α′β , (2.21)

which can be compactly written as follows

GMαβ(iωn) =
(

1
iωn − h

)
αβ

.

The last line comes simply from h = UΛU† and therefore Uf(Λ)U† = f(h) for any function f which can be
expanded in Taylor series. The quantity R = 1

ω−h corresponds to the analytic continuation of the previous expression
which is called the resolvant in the literature. It has some properties which have been developed for the studies of
scattering problems in the fifties.

2.3.3 The resonant level model
Let us consider now the case of a state |d〉 coupled to a a large number of states labeled by |k〉. Such a situation

is described by the following Hamiltonian

Ĥ = εdd̂
†d̂+

∑
~k

εk ĉ
†
k ĉk + t√

V

∑
k

(ĉ†kd̂+ h.c.). (2.22)

Typically, the state labeled by d indicates a quantum dot or some d orbital of a magnetic atom coupled to a
Fermi sea. Our goal is to obtain the spectral function ρ(ω) of such system. Notice that we are still dealing with
a non-interacting Hamiltonian and therefore this is clearly a oversimplified description of the reality. However, it
still embodies a large set of situations essentially because of the Fermi liquid picture and renormalization group
arguments we developed in the introduction. We will come back to this point later in the course.

To start with, let us compute the Matsubara Green function GMd (iωn) defined in this case as

GMd (τ) = −〈Tτ d̂(τ)d̂†(0)〉 .

Using previous notations, we can write our Hamiltonian in terms of a matrix h of the following form

h =


εd t/

√
V · · · t/

√
V

t/
√
V εk1 0

...
. . .

t/
√
V 0 εkN

 .
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Remind that for a block-matrix of the form (
A B
C D

)
,

assuming it can be inverted, the inverse of the first block (in the same position as A) reads (A−BD−1C)−1. In our
basis, this term corresponds to the diagonal term coupling the state d with itself. Indeed, we can identify A = εd,
B =

(
t/
√
V , · · · , t/

√
V
)
, C = Bt and

D =

εk1 0
. . .

0 εkN

 .

Therefore

A−BD−1C = εd −
t√
V

(
1 · · · 1

)1/εk1 0
. . .

0 1/εkN


1
...
1


= εd −

t2

V

∑
k

1
εk
.

We have previously seen that GMαβ(iωn) is given by the inverse of the matrix iωn − h, and therefore

GMd (iωn) = (iωn −M)−1 =
(
iωn − εd −

∑
k

t2

V

1
iωn − εk

)−1

= 1
iωn − εd − t2

V

∑
k

1
iωn−εk

.

By analytic continuation, we obtain the retarded Green function

GRd (ω) = 1
ω − εd + i0+ − t2

V

∑
k

1
ω−εk+i0+

.

We introduce the so-called self-energy Σ = t2

V

∑
k

1
iωn−εk+i0+ . This function of ω is a priori complex, and we note

Σ = Σ1 + iΣ2 = Σ′ + iΣ′′.

The real part of the self-energy is given by the principal part of Σ

Σ1 = t2

V

∑
k

PP 1
ω − εk

,

while the imaginary part of σ is given by

Σ2 = −πt
2

V

∑
k

δ(ω − εk).

The discrete sums being difficult to calculate in general, we take the continuum limit to calculate Σ1 and Σ2.
We therefore replace the discrete sum by an integral in energy :

Σ1 = t2ν0PP
∫ D

−D
dε

1
ω − ε

,

where ν0 is the density of states at the Fermi level and D the bandwidth.
To calculate this integral, we cut it into two pieces before and after the discontinuity and introduce some

infinitesimal energy cut-off δ. On the right side, we get∫ D

ω+δ
dε

1
ω − ε

= −
∫ D−ω

δ

dε

ω
= − ln D − ω

δ
,
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while on the left side, we have ∫ ω−δ

−D
dε

1
ω − ε

=
∫ D

−ω+δ
dε

1
ω + ε

= ln D + ω

δ
.

Gathering both pieces,

Σ1 = t2ν0

(
− ln

(
D − ω
δ

)
+ ln

(
D + ω

δ

))
= t2ν0 ln D + ω

D − ω
.

In the limit D → ∞ (the large band limit), this contribution to the self-emergy tends toward 0. This is typically
the case if we are interested in physical processes occuring in some range of energy ∆E � D around the finite level.
Let us now evaluate Σ2 which reads

Σ2 = −πt2ν0

∫
dεδ(ω − ε) = −πt2ν0 ≡ −Γ.

where we introduce the energy Γ = πt2ν0 that corresponds to the finite energy width of the level.
The retarded Green function is finally given in the large bandwidth as

GRd (ω) = 1
ω − εd + iΓ . (2.23)

The spectral function of the d-level (also called the local density of states) thus reads

ρd(ω) = − 1
π
=GRd (ω) = 1

π

Γ
(ω − εd)2 + Γ2 .

This function is normalized to 1. ρd corresponds to a Lorentzian distribution of width Γ centered around the energy
of the isolated level described by |d〉. Consequently, the coupling between a localized level and a continuum of states
entails a broadening of the delta peak of the isolated states.

Let us come back to the retarded Green function of the d-level :

GRd (t) =
∫ +∞

−∞

dω

2π
e−iωt

ω − εd + iΓ .

The calculation of this integral can be achieved using the residue theorem. As above we have GRd (t < 0) = 0 as it
should be. However for t > 0, the pole in the lower half-plane provides a contribution and we obtain

GRd (t) = −iθ(t)e−iεdte−Γt. (2.24)

GRd (t) can be interpreted as the probability amplitude for an electron in the resonant d-level at t = 0 to remain in
this state at time t. Indeed, we can write

GRd (t) = 〈0|d̂Û(t)d̂†|0〉 ,

where Û(t) denotes the evolution operator e−iĤ . We can recognize the Fermi Golden rule. Therefore, the probability
for the electron to remain in the state |d〉 is given by

Pd(t) = |GRd (t)|2 = e−2Γt = e−t/τ ,

where τ = 1
2Γ corresponds to the characterisic emission time.

2.4 Spectral representation
2.4.1 Lehmann representation

We have expressed in the previous section the single-particle Green function. Let us extend them to interacting
particles. Before demonstrating their expression, we summarized them in the following array for fermions
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Free fermion General case
GM (iωn) 1

iωn−ε
∫
dω′

ραβ(ω′)
iωn−ω′

GM (τ) − e−ετ

1+e−βε
∫
dω′ραβ(ω′) −e

−ω′τ

1+e−βω′

GR(t) −iθ(t)e−iεt
∫
dω′ραβ(ω′)e−iω′t

ραβ(ω) δ(ω − ε) ραβ(ω)

The following relations are general (whatever the nature of particles even in presence of interactions)

GMαβ(iωn) =
∫ +∞

−∞
dε
ραβ(ε)
iωn − ε

, (2.25)

GRαβ(ω) =
∫ +∞

−∞
dε

ραβ(ε)
ω − ε+ i0+ . (2.26)

As will be show further these definitions and relations rely on the existence of an Hilbert space. FRom the Lehmann
representation we define and write the spectral function (or density of states) as

ραβ(ω) = 1
Z

∑
A,B

eβµNA(e−βEA − ζψe−β(EB+µ))× 〈A|ĉα|B〉 〈B|ĉ†β |A〉 δ(ω + µ+ EA − EB), (2.27)

where |A〉 and |B〉 are eigenstates of Ĥ − µN̂ with eigenvalues

E′A = EA − µNA, E′B = EB − µ(NA + 1).

If we instead use the energy eigenvalues of H ′, Eq. (2.27) simply reads :

ραβ(ω) = 1
Z

∑
A,B

(e−βE
′
A − ζψe−βE

′
B )× 〈A|ĉα|B〉 〈B|ĉ†β |A〉 δ(ω + E′A − E′B), (2.28)

Note however that ραβ(ω) being a probability density, it is normalized and satisfies∫ +∞

−∞
ραβ(ω)dω = δαβ .

Exercice Show the above property starting from Eq. (2.28)

When α and β correspond to single-particles eigenstates, 〈B|ĉ†β |A〉 is different from 0 iff EB = EA + εβ in which
case we can replace the Dirac distribution in Eq. (2.27) by δ(ω + µ− εβ). We thus obtain the following expression
for the retarded Green function

GRαβ(t) = δαβ(−iθ(t)e−i(εα−µ)t),

indicating quantum coherence.
To demonstrate (2.25) and (2.26), we consider first the retarded Green function

GRab(t− t′) = −iθ(t− t′) 〈[ψ̂α(t), ψ̂†β(t′)]ζψ 〉 ,

and define the following two other Green functions

G>αβ(t− t′) = −i 〈ψ̂α(t)ψ̂†β(t′)〉

G<αβ(t− t′) = −iζψ 〈ψ̂†β(t′)ψ̂α(t)〉 ,

which are called the greater and lesser Green functions respectively. These Green functions will play a role later on
when we will discuss transport properties. The retarded Green function can be thus expressed as

GRαβ(t− t′) = θ(t− t′)(G>αβ(t− t′)−G<αβ(t− t′)).
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I remind that 〈· · ·〉 is defined by 1
ZTr(e

−βĤ′ · · · ), where Ĥ ′ = Ĥ−µN̂ . Let us introduce the eigenstates of Ĥ ′ noted
|A〉 and |B〉. We have for G>

G>αβ(t− t′) = − i

Z
Tr(e−βĤ

′
ψ̂α(t)ψ̂β(t′)).

Introducing two resolutions of the identity in this expression and using the time evolution of ψ̂α(t) = eiĤ
′tψ̂αe

−iĤ′t,
we can write

G>αβ(t− t′) = − i

Z

∑
A,B

e−βE
′
A 〈A|ψ̂α|B〉 〈B|ψ̂†β |A〉 e

i(E′A−E
′
B)(t−t′).

Using a similar reasoning we can also express G<αβ

G<αβ(t− t′) = − iζψ
Z

∑
A,B

e−βE
′
B 〈A|ψ̂α|B〉 〈B|ψ̂†β |A〉 e

i(E′A−E
′
B)(t−t′).

Finaly the retarded Green function reads

GRαβ(t) = 1
Z

∑
A,B

〈A|ψ̂α|B〉 〈B|ψ̂†β |A〉 (−i)θ(t)e
i(E′A−E

′
B)t(e−βE

′
A − ζψe−βE

′
B ).

By Fourier transforming it, we obtain the energy dependence of the retarded Green function as

GRαβ(ω) = 1
Z

∑
A,B

〈A|ψ̂α|B〉 〈B|ψ̂†β |A〉
ω + E′A − E′B + i0+ (e−βE

′
A − ζψe−βE

′
B ).

Using the property that
1

ω + E + i0+ = PP

(
1

ω + E

)
− iπδ(ω + E),

we introduce the spectral function (i.e. density of states) as

ραβ(ε) = 1
Z

∑
A,B 〈A|ψ̂α|B〉 〈B|ψ̂

†
β |A〉 (e−βE

′
A − ζψe−βE

′
B )δ(ε+ E′A − E′B) . (2.29)

With this identification of the spectral function, we can thus write the retarded Green function as

GRαβ(ω) =
∫
dε

ραβ(ε)
ω − ε+ i0+ .

This explictly demonstration the expression (2.26) for the retarded Green function from the identification of the
spectral function in Eq. (2.29).

Note that for fermions, ραα is real and satisfies ραα(ε) ≥ 0.
Concerning the Matsubara Green function, we have

GMαβ(τ) = − 1
Z

∑
A,B

e−βE
′
A 〈A|ψ̂α|B〉 〈B|ψ̂†β |A〉 e

(E′A−E
′
B)τ ,

and its Fourier transform as

GMαβ(iωn) =
∫ β

0
eiωnτGMαβ(τ)dτ

= − 1
Z

∑
A,B

〈A|ψ̂α|B〉 〈B|ψ̂†β |A〉 e
−βE′A

∫ β

0
eiωnτ+(E′A−E

′
B)τdτ

= − 1
Z

∑
A,B

〈A|ψ̂α|B〉 〈B|ψ̂†β |A〉
1− ζψeβ(E′A−E

′
B)

iωn + E′A − E′B
e−βE

′
A .

This also demonstrates the Eq. (2.25) :

GMαβ(iωn) =
∫ +∞

−∞
dε
ραβ(ε)
iωn − ε

.
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The other Green function follow accordingly.
Let us provide a more physical interpretation to this retarded Green function at T = 0. For t > 0, we can always

write GRαα(t) as
GRαα(t) = −〈GS|eiĤtĉαe−iĤtĉ†α|GS〉 − 〈GS|ĉ†αeiĤtĉαe−iĤt|GS〉 .

Let us the initial electronic state as |ψe(0)〉 = ĉ†α |GS〉 and its time-evolution as |ψe(t)〉 = e−iĤt |ψe(0)〉. We can
have an equivalent writing for holes as |ψh(0)〉 = ĉα |GS〉. The Green function thus reads

GRαα(t) = −eiEGSt 〈ψe(0)|ψe(t)〉 − e−iEGSt 〈ψh(t)|ψh(0)〉 for t > 0.

The retarded Green function thus measures the overlap between the electron and hole excitations at time t = 0 and
time t when they evolve under the action of the hamiltonian. If this states are eigenstates of H, then this is just
phases. In general, they are not eigenstates and the Green function it measures the spreading of the electron and
hole excitations.

2.4.2 Hilbert transform
We introduce the Hilbert transform of ρ as

H[ρ]ab(z) =
∫ +∞

−∞
dε
ρab(ε)
z − ε

, z ∈ C\R. (2.30)

One of the properties of this transformation is that

H[ρ](z̄) = (H[ρ](z))†. (2.31)

Utilizing this transform, the retarded and Matsubara Green functions can be simply written as

GR(ω) = H[ρ](ω + i0+)
GM (iωn) = H[ρ](iωn).

This is then clear that these two Green functions can be obtained using the analytical continuation iωn → ω+ i0+.
Such analytical continuation is a priori far from obvious. Consider for example f(z) = sinh zβ, where z =

(2n+1)π
β . The analytical continuation of this function gives f(iωn) = sin ((2n+ 1)π) = 0, and thus f = 0 for all

Matsubara frequencies. This prevents us from going backward and thus to recover the starting Green function by
simply substituting iωn → ω+ i0+. However, for Green functions, we know that they behave in the limit ω → +∞
as 1

z , which garantees the possibility to find such analytical continuation. Indeed, in the case where both f(z) and
g(z) are equal for the Matsubara frequencies and behave as 1

z in the z → ∞ limit, we know that f = g and the
correspondance is univocal.

In most problems, the calculations of the Green fucntions has to be done numerically and there are systematic
errors in the calculations of Green functions. In the expression

G(τ) = −
∫
dερ(ε) e−ετ

1 + e−βε
, 0 ≤ τ ≤ β,

the term e−ετ

1+e−βε is very small at large energy far from the Fermi level. The problem is then ill-posed. Indeed, the
the Green function can be written as

G(τ) =
∑
ε

K(ε, τ)ρ(ε),

where the term in K(ε, τ) is extremely small at high energy and typically within the systematic error bars. This
makes the numerical analytical continuation rather tricky.

2.4.3 Sum over Matsubara frequencies
In many cases, we need to calculate a sum over Matsubara frequencies of the type 1

β

∑
n φ(iωn).

We typically assume that the function Φ(z) is meromorphic in the complex plane (i.e. only has a finite number
of poles and no branch cuts). In most cases, the function Φ(z) will be a fraction.

Let us extend the Fermi (or simlarly the bose function) in the complex plane as f(z) = 1
1+eβz . The poles of f

are in eβz = −1 and therefore in z = iωn. The residue of f in z = iωn is −1/β.
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We now consider a circle C parametrized by z = Reiθ with R→∞. We use the fact that the integral I on the
contour C satisfies

I =
∮
C

f(z)φ(z) = 0,

when taking R→∞. We can also apply the residue theorem to evaluate I as

I =
∑
n

(−1
β

)φ(iωn) +
∑
l

f(zl)Res(φ, zl),

where the sum over l is the sum over all poles zl of the function φ and Res(φ, zl) are the corresponding residues.
We thus obtain the important result

1
β

∑
n φ(iωn) =

∑
l

fD(zl)Res(φ, zl) for fermions. (2.32)

Therefore the Matsubara summation reduces to a summation over a finite (generally small) number of terms
easily to calculate.

Had we consider bosonic Matsubara frequencies, we would obtain

1
β

∑
n φ(iωn) = −

∑
l

nB(zl)Res(φ, zl) for bosons, (2.33)

where nB(z) = 1
eβz−1 .

2.5 2-particle correlation function
To be written.



Chapitre 3

Feynman diagrams

3.1 Notations
In what follows, we will study Hamiltonians of the follwoing form

Ĥ = Ĥ0 + V̂ ,

where Ĥ0 is quadratic (and therefore integrable)

Ĥ0 =
∑

Mabĉ
†
aĉb,

while V̂ is a quartic interaction
V̂ = 1

2
∑
λµνρ

Vλρ;µν ĉ
†
λĉ
†
µĉν ĉρ.

The matrix element Vλρ;µν verifies
Vλρ;µν = Vµν;λρ.

Since we can not calculate the single-particle Green functions for such a problem exactly, our goal will be to calculate
them in perturbation theory. We wish to determine GM (τ, τ ′) in powers of V̂ . Our strategy will be composed of
three parts

— Express GM of the interacting problem as series in V̂ in order to obtain the correction to the nth order of
the bare Green function noted G(n)

0 . We will use the interaction representation which is well suited here.
— Using the Wick theorem, we will see how to compute these Green functions G(n)

0 . The Wick theorem relies
on Ĥ0 being quadratic (i.e. describes free particles).

— Finally we will calculate each term in the expansion in V̂ using Feynman diagrams. This is the hardest part
since it involves complicated integrals of order n which may suffer from divergences.

3.2 Interaction representation
While the Heisenberg representation use the time-evolution of the full Hamiltonian Ĥ ′, the interaction repre-

sentation only utilizes only the free Hamiltonian Ĥ ′0. In this representation the time-evolution of an operator Â is
given by

Ã(τ) = eτĤ
′
0Âe−τĤ

′
0 . (3.1)

We will try to keep the subscript Ã to indicate the interaction representation. The expectation value of an observable
A is still given by

〈A〉 = 1
Z
Tr(e−βĤ

′
Â), (3.2)

and we will define the free expectation value

〈A〉0 = 1
Z

Tr(e−βĤ′0Â)
Tr(e−βĤ′0)

(3.3)

22
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Let us consider the Matsubara Green function GMab(τ − τ ′) = −〈Tτ ĉa(τ)ĉ†b(τ ′)〉, and the 2-body correlation
function χαβγδ(τ1, τ2, τ3, τ4) ≡ −〈Tτ (ĉα(τ1)ĉβ(τ1)ĉ†γ(τ3)ĉ†δ(τ4))〉.

For the former Green function, we will show that

GMab(τ − τ ′) = −
〈Tτ c̃a(τ)c̃†

b
(τ ′) exp

(
−
∫ β

0
duṼ (u)

)
〉

0

〈Tτ exp
(
−
∫ β

0
duṼ (u)

)
〉

0

, (3.4)

while the latter correlation is given by

χαβγδ(τ1, τ2, τ3, τ4) = −
〈Tτ c̃α(τ1)c̃β(τ2)c̃†γ(τ3)c̃†

δ
(τ4) exp

(
−
∫ β

0
duṼ (u)

)
〉

0

〈Tτ exp
(
−
∫ β

0
duṼ (u)

)
〉

0

. (3.5)

Proof : We use the decomposition :
Â(τ) = Û−1(τ)Ã(τ)Û(τ).

where we introduced the evolution operator Û(τ) defined by

Û(τ) = eτĤ
′
0e−τĤ

′
.

We wish to express the evolution operator in a simpler form. Let us take the derivative of it to obtain

dÛ(τ)
dτ

= Ĥ ′0e
τĤ′0e−τĤ

′
+ eτĤ

′
0e−τĤ

′
(−Ĥ ′)

= eτĤ
′
0(Ĥ ′0 − Ĥ ′)e−τĤ

′

= −eτĤ
′
0 V̂ e−τĤ

′
0eτĤ

′
0e−τĤ

′
.

And finally, we get
dÛ(τ)
dτ

(τ) = −Ṽ (τ)Û(τ), (3.6)

with the initial condition Û(τ = 0) = 1̂. The evolution operator can thus be expressed in terms of Ṽ as

Û(τ) = Tτ

(
exp

(
−
∫ τ

0
duṼ (u)

))
. (3.7)

We have included the time-ordering operator Tτ . Its presence is actually necessary and makes sense if we expand the
exponential in series. In this case, a typical term of the expansion reads

∫ ∫ ∫
· · ·
∫
dτ1dτ2dτ3 · · · dτnṼ (τ1)Ṽ (τ2)Ṽ (τ3) · · · Ṽ (τn),

and the time ordering applies to all different terms in powers of Ṽ . In order to check that Eq. (3.7) satisfies to Eq.
(3.6), let us take the derivative with respect to τ . We thus obtain

d

dτ
Tτ

(
exp

(
−
∫ τ

0
duṼ (u)

))
= Tτ

[
−Ṽ (τ) exp

(
−
∫ τ

0
Ṽ (u)du

)]
= −Ṽ (τ)Û(τ),

and we indeed recover the form in Eq. (3.7).
Let us now show the expression in Eq. (3.4) of the Matsubara Green function. The partition function reads

Z = Tr(e−βĤ
′
) = Tr

(
e−βĤ

′
0eβĤ

′
0e−βĤ

′
)

= Tr
(
e−βĤ

′
0Tτ exp

(
−
∫ β

0
Ṽ (u)du

))

= Z0 〈Tτ exp
(
−
∫ β

0
Ṽ (u)du

)
〉
0

.

Let us introduce Ŝ(τ, τ ′) = Û(τ)Û−1(τ ′). We do have Ŝ(τ, 0) = Û(τ). We also have Ŝ(τ1, τ2)Ŝ(τ2, τ3) = Ŝ(τ1, τ3)
This is to show that

Ŝ(τ, τ ′) = Tτe
−

τ∫
τ′
Ṽ (u)du

.
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We want to calclulate the 2-point correlation function. Let us focus on the numerator and assume τ > τ ′.

(ĉa(τ)ĉ†b(τ
′)) = Tr

(
Tτ (e−βĤ

′
0Û−1(τ)c̃a(τ)Û(τ)Û−1(τ ′)c̃†b(τ

′)Û(τ ′))
)

= Tr
(
e−βĤ

′
0 Ŝ(β, 0)Ŝ(0, τ)c̃a(τ)Ŝ(τ, 0)Ŝ(0, τ ′)c̃b(τ ′)Ŝ(τ ′, 0)

)
= Tr

(
e−βĤ

′
0 Ŝ(β, τ)c̃a(τ)Ŝ(τ, τ ′)c̃b(τ ′)Ŝ(τ ′, 0)

)
= Tr

(
Tτe
−βĤ′0 c̃a(τ)c̃b(τ ′)Ŝ(β, 0)

)
.

In order to go from the 3rd to the 4th line, we use the fact that 0 < τ ′ < τ < β, therefore the operators in the
3rd line were already time-ordered. We could therefore reshuffle all the operators under the time-ordering sign to
simplify the expression. Notice that since V is quartic in the number of operators, there is no sign coming in.

Combining these two results, we indeed find Eq. (3.4). We can do exactly the same reasoning had we assumed
τ < τ ′. A similar reasoning also allows to demonstrate the Eq. (3.5). Notice that these results are general and
rely and the interaction representation. H0 does not need to be quadratic at this stage. We only assume thermal
equilibrium (i.e. imaginary-time translation invariance).

3.3 Some technical remarks
In what follows, we will need to calculate the sum of a function over Matsubara frequencies like

1
β

∑
n

φ(iωn),

where φ is some regular function in C. To do so, we introduce the Fermi function nF (z) extended in the complex
plane :

nF (z) = 1
1 + eβz

.

The poles of nF (z) are located in z = iωn, where ωn are the fermionic Matsubara frequencies (for fermions,
ωn = πT (2n+ 1)). Let us integrate the function φ(z) multiplied by the Fermi Dirac function in the whole complex
plane along a circular contour C centered around the origin O and of radius R→∞. We therefore obtain∫

C

dz

2iπnF (z)φ(z) = − 1
β

∑
n

φ(iωn) +
∑
l

rlnF (zl) = 0,

where zl are the poles of the function φ with residues rl (notice that the residues of nF (z) in z = iωn are given
by − 1

β ). The function nF (z)φ(z) being regular in C, the whole integral should be 0. We thus obtain the following
result :

1
β

∑
n

φ(iωn) =
∑
l

rlnF (zl). (3.8)

To illustrate this result, let us consider the following simple example :

φ(iωn) = eiωn0+

iωn − ε
.

That function has a single pole zl = ε de résidu 1. We can therefore infer using Eq. (3.8) that

1
β

∑
n

eiωn0+

iωn − ε
= nF (ε).

3.4 Wick Theorem
3.4.1 The theorem
Theorem 1 We consider a quadratic Hamiltonian given by

Ĥ0 =
∑
α,β

ĉ†αMαβ ĉβ .
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In the case of fermions, the 2n-particles correlation functions can be written using the Wick theorem as follows :

〈Tτ ĉα1(τ1) · · · ĉαn(τn)ĉ†α′n(τ ′n) · · · ĉ†α′1(τ ′1)〉
0

=
∑
P∈Sn

sgn(P )
n∏
k=1
〈Tτ ĉαk(τk)ĉ†α′

Pk

(τ ′Pk)〉
0
, (3.9)

where sgn(P ) = ζP = (−1)number of exchanges. Actually, if we set Âα = ĉα or ĉ†α, a slighly more general form of the
Wick theorem states that

〈Tτ Â1(τ1) · · · Â2n(τ2n)〉 =
∑
P
ζP

n∏
k=1
〈Tτ Âik(τik)Âjk(τjk)〉.

For bosons, we do have ζP = 1.
The conditions of applications of the Wick theorem are that H0 shall be quadratic and the operators Âα obey

canonical commutations relations (i.e. commutation or anticommutation relations).
Therefore, there is no Wick theorem for spin operators !

3.4.2 Its Proof
This is quite cumbersome and not so useful. I will recommend instead the one given in Bruus and Flensberg p

199 for those who are interested.

3.4.3 Use of the theorem
This is obviously more important than its proof for practical use. Let us consider the ordered product of 4

creation and destruction operators according to

Tτ c̃α1(τ1)c̃α2(τ2)c̃†β1
(τ3)c̃†β2

(τ4),

and let us calculate its average. The Wick theorem told us that this expresion can be decomposed in products of
quadratic averages. We see that the terms c̃c̃ where c̃†c̃† give a zero contribution. Therefore the only two non-zero
contributions are the terms (1, 3) and (2, 4) for the first case and (1, 4) and (2, 3) for the second one. The first term
(A)has a − sign due to the permutation of the operators to pair them while the second term (B) has a + sign. We
finally obtain

〈Tτ c̃α1(τ1)c̃α2(τ2)c̃†β1
(τ3)c̃†β2

(τ4)〉
0

= −〈Tτ c̃α1(τ1)c̃†β1
(τ3)〉

0
〈Tτ c̃α2(τ2)c̃†β2

(τ4)〉
0

+ 〈Tτ c̃α1(τ1)c̃†β2
(τ4)〉

0
〈Tτ c̃α2(τ2)c̃†β1

(τ3)〉
0
.

3.5 Perturbative expansion of the Green functions and Feynman dia-
grams

The idea behind the perturbative expansion consists in expanding the term exp
[
−
∫ β

0 duṼ (u)
]
in powers of Ṽ (u)

as 1 −
∫ β

0 Ṽ (u)du + 1
2
∫ β

0
∫ β

0 Ṽ (u1))Ṽ (u2)du1du2 + · · · and then use the Wick theorem to decompose the average
values containing several operators as products of the form 〈Tτ c̃αc̃†β〉0 in both the numerator and the denominator
At first order, this gives for Gαβ(τ − τ ′)

Gαβ(τ − τ ′) = −〈Tτ c̃α(τ)c̃†β(τ ′)〉
0

+
β∫

0

du 〈Tτ c̃α(τ)c̃†β(τ ′)Ṽ (u)〉
0

+
∫ β

0
du 〈Tτ c̃α(τ)c̃†β(τ ′)〉

0
〈Ṽ (u)〉0

At first order, our Green function can be written as the sum of two terms

G = G0 +G1,

where G0 is the non-interacting Green function and G1 is the first order of the perturbation theory which can be
written formally as

G1 =
∫ β

0
du

1
2
∑
λρ,µν

Vλρ,µνK,
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where K is given as

K = 〈Tτ c̃α(τ)c̃†β(τ ′)c̃†λ(u)c̃†µ(u)c̃ν(u)c̃ρ(u)〉
0
− 〈Tτ c̃α(τ)c̃†β(τ ′)〉

0
〈Tτ c̃†λ(u)c̃†µ(u)c̃ν(u)c̃ρ(u)〉0 .

The first term (A) given by the Wick theorem is obtained by contracting the α and β operators in both
terms in K. However, these two terms cancel each other exactly. The next possible contractions are on one hand
B = (α, λ), (β, ν), (µ, ρ) and C = (α, µ), (β, ρ), (λ, ν). However due to the symmetry of Vλρ;µν = Vµν;λρ we do have
B = C. These two terms are called Fock terms and appear with a global − sign. Finally the last two contributions
are E = (α, µ), (β, ν), (λ, ρ) and D = (α, λ), (β, ρ), (µ, ν). Once again these two terms are equal to each other and
thus E = D. This rerm appears with a global + sign. The two non-zero terms (actually 2*2 in total)are products
of three bare Green functions. We obtain for G1

αβ the following expression

G1
αβ(τ − τ ′) =

∑
µν,ρλ

∫
duVλρ,µν

[
−G0

αλ(τ − u)G0
νβ(u− τ ′)G0

ρµ(0−) +G0
αλ(τ − u)G0

ρβ(u− τ ′)G0
νµ(0−)

]
.

Let us simplify the previous expression. Let us consider in that purpose the integral of A(τ − u)B(u − τ ′). By
expanding over the Matsubara frequencies, we obtain∫ β

0
duA(τ − u)B(u− τ ′) = 1

β2

∑
n1,n2

∫ β

0
duA(iωn1)B(iωn2)e−iωn1 (τ−u)e−iωn2 (u−τ ′).

As
∫ β

0 dueiu(ωn1−ωn2 ) = βδn1,n2 , we can simplify the integral over u and obtain

1
β

∑
n

A(iωn)B(iωn)e−iωn(τ−τ ′) = FT (A(iωn)B(iωn)).

Finally in Fourier space, we find that the expression of G1
αβ is given by

G1
αβ(iωn) =

∑
λρ,µν

Vλρ,µν

[
G0
αλ(iωn)G0

βρ(iωn) 〈c̃†µc̃ν〉0 −G
0
αλ(iωn)G0

νβ(iωn) 〈c̃†µc̃ρ〉0
]
.

This is the final result. The method we used appears quite cumbersome already at first order. Needless that
such method is likely to be filled with mistakes at higher order. The diagrammatic approach is actually an alter-
native approach and enables a direct calculation of G(n)

αβ from diagrams built according to Feynman rules. These
diagrams use two types of objects :

(a) (b)

Figure 3.1 – (a) Vertex and (b) external legs of the Feynman diagrams

i) The vertex diagrams (see Figure(3.1.a)). These vertex are related to the interaction

−Vλρ;µνδ(u− u′)c̃†λ(u)c̃†µ(u′)c̃ν(u′)c̃ρ(u). (3.10)

This part of the diagrams possesses an inversion symmetry due to the invariance of V when exchanging λρ and
µν. The diagrams are also composed of two external legs (see figure(3.1.b)). These two legs correspond to the
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two creation and annihilation operators respectively c̃†β(τ ′) and c̃α(τ). The diagrams are then formed by connecting
these external legs to the vertex. The number of vertex is equal to the degree of expansion in V of the Green
function. In the figure, we have used two different labels for the variables u and u′. This corresponds a priori to
the time-delay of the Coulomb interaction (no interaction is instantaneous). However, this time is extremely fast
compared to the time scale we are interested in. Therefore, we can fairly assume u = u′ as we did in Eq. (3.10) with
the delta distribution.

At first order in V , the possible diagrams which can be drawn from one vertex and two external legs are de-
picted in Fig. (3.2). The first of this term in Fig. (3.2.a) is equivalent to the (A) contribution. This diagam is
however non-connected. A general property of the Feynman diagrams is that the non-connected diagrams bring a
zero contribution to the Green function (we won’t show this property but the reader can convince himself going
back to the definition of Green function). In what follows we will not draw these disconnected diagrams.

(a)

(b)

(c)

Figure 3.2 – Contribution of order (1) to the Matsubara Green function : (a) Term of type (A) (b) Hartree diagram
(c) Fock diagram. The right figures correspond simply to the condensed drawing of the figures in the left.

ii) The second contribution in (3.2.b) is formed from a line of particles and a loop linked by a propagator. This
term is equivalent to the previous Hartree term. The calculation of the Green function is as follows : we associate
every line of the diagram to a bare Green function G0

ψξ where the two indices ψξ belong to two different legs of the
diagram connected to each other taken in the order opposite to the direction of the arrow. The time variables of
the Green functions follow a similar rule. We therefore obtain for this diagram the following contribution

G0
ρβ(u− τ ′)G0

αλ(τ − u)Gνµ(0−),

where we assumed u = u′. The global sign in front of this term will be detailed further. We will need to integrate
over u. Notice that with have a single loop which is related to the order of the expansion.

Finally, the last contribution to the Green function is the term in Fig. (3.2.c). This term corresponds to the Fock
term previously discussed. It is built from a line (representing a bare Green function) from which a propagator is
emitted and then reabsorbed to give another line. As for the Hartree term, there is a single loop and therefore a
single integration over u too. Following our prescription, the contribution to the Green function of this diagram

−G0
νβ(u− τ ′)G0

ρµ(0−)G0
αλ(τ − µ),

where the global − sign will be further explained. Notice that the indices of the vertex have been modified in this
diagram compared to Fig. (3.2.b) following the symmetry of Vλρ,µν .
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From this three diagrams, we have built a representation of G1. It is even (far) easier to obtain it frequency
space since less indices are involved. Indeed, we must ensure conservation of the frequency (energy) at every nodes
of the diagram and sum over all intermediate frequencies. Therefore, for the Hartree diagram in Fig. (3.2.b), we
have for the Green function in frequency space :

G1−Hartree
αβ (iωn) = G0

αλ(iωn)G0
ρβ(iωn)

∑
n1

G0
νµ(iωn1)eiωn1 0+

,

where the term eiωn1 0+ is just added to ensure the convergence of the whole Green function.

3.6 Feynman rules
In order to build the Feynman diagrams, we can enumerate the following 7 general rules. For a term of order n

in V ,
1. Draw all topologically distinct diagrams with two external legs and n vertices
2. The frequency should be conserved at all nodes of the diagrams.
3. Every vertex should be taken with a factor Vλρ,µνδ(u− u′).
4. To every line, we associate the propagator G0

αβ(iωn).
5. We sum over all internal degrees of freedom (λ, α, β, ρ, · · · ) and all internal frequencies.
6. We associate a sign (−1)n(−1)F to every diagram where n is the order of the expansion and F the number

of fermionic loops.
7. Ensure the conservation of momentum for each vertex.
The sixth rule give us access to the global signs in front of each diagram in the calculation of the Green function.

We therefore see that for the diagram in Fig. (3.2.b), the expansion corresponds to n = 1, and the diagram contains
one fermionic loop so F = 1. We therefore obtain a whole contribution +1 and a global + sign. Concerning the
Fock diagram depicted in Fig. (3.2.c), we find a global − sign due to the absence of fermionic loop.

To illustrate these rules, let us consider the Hamiltonian Ĥ0 =
∑
k,σ εk ĉ

†
k,σ ĉk,σ, with the perturbation

V̂ = 1
V
∑
k1,k2,q

1
2V‖(q)

∑
σ=↑,↓

ĉ†k1+q,σ ĉ
†
k2−q,σ ĉk2,σ ĉk1,σ + 1

2VA(q)ĉ†k1+q,↑ĉ
†
k2−q,↓ĉk2,↓ĉk1,↑

,
where V denotes the volume. Moreover, we assume inversion symmetry, nnamely V‖(−q) = V‖(q).

(a)

(b)

Figure 3.3 – (a) Vertex associated with
V‖ (b) Vertex associated with VA.

The vertices associated with these perturbations are represented in
Figs (3.3.a) and (3.3.b) for V‖ and VA respectively.

The explicit form of V‖ and VA depends on the type of interaction
V (r) used. For example, for the Coulomb interaction V (r) = e2

4πε0
1
|r| , we

obviously obtain that VA(q) = V‖(q) = e2

ε0q2 , while for a local interaction
such as V (r) = gδ(r) where g denotes a constant (typically = 4π~2a

m for
cold atoms), V‖ = 0 whereas Va(q) = g.

With this general form where V‖ and VA are not specified, the Hartree
term reads (using momentum conservation) :

G1
k↑(iωn) = G0

k(iωn)G0
k(iωn)

∑
n′

∫
d3k′

(2π)3
1
β
G0
k′(iωn′)eiωn0+

V (q = 0)

= 1
(iωn − εk)2

[
V‖(q = 0) 〈n↑〉0 + 1

2VA(0) 〈n↓〉0

]
,

where 〈n↑〉0 is given by

〈n↑〉0 =
∫

d3k

(2π)3 〈ĉ
†
k↑ĉk↑〉 =

∫
d3k

(2π)3
1
β

∑
ωn

eiωn0+

iωn − εk
.
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Finally concerning the Fock term, we see that the VA term does not
contribute due to spin conservation, and the contribution to the Green
function is

G1
k(iωn) = −G0

k(iωn)G0
k(iωn) 1

β

∑
ωn1

∑
q

G0
k+q(iωn + iωn1)ei(ωn+ωn1 )0+

.

Using
1
β

∑
ωn1

G0
k+q(iωn + iωn1) = 1

β

∑
ωn1

G0
k+q(iωn1)eiωn1 0+

= nF (εk+q),

We obtain the Fock contribution to the Green function G1
k↑ is

G1
k↑(iωn) = − 1

(iωn − εk)2

∑
q

V‖(q)nF (εk+q)

We have seen that the Green functions can be rewritten as the sum of diagrams. Hence, at first order the previous
problem can be summarized picturally as in Fig. 3.4.

Figure 3.4 – Diagrammatic expansion of the interacting Green function at first order in perturbation theory

Let us see how the introduction of the self-energy allows to simplify the calculations and can improve the
approximation by resuming certain types of diagrams. Let us define ΣH(k, iωn), the self-energy of the Hartree term
as

ΣH(k, iωn) = = V‖(0) 〈n↑〉0 + VA(0) 〈n↓〉0 .

We can extract a class of diagrams that we can sum up. We therefore obtain the following geometric series :

+ + + + · · · = G0

[
1 +

∞∑
n=1

(ΣHG0)n
]

= 1
1− ΣHG0

= 1
G−1

0 − ΣH
,

and finally, this sum of diagrams gives for GH

GH = 1
iωn − (εk − µ)− ΣH

.

As we did for the Hartree term, it is possible to treat the Fock terms similarly as follows :

ΣF = −
∑
q

V‖(q)nF (εk+q)

GF = + + + + · · ·
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More generally, it is possible to obtain the Green function by resuming combinations of diagrams as follows :

G0 +G0(ΣH + ΣF )G0 +G0(ΣH + ΣF )G0(ΣH + ΣF )G0 + · · · = 1
iωn − (εk − µ)− (ΣH + ΣF )

=
1−

(
+

)
·

Therefore, we obtain
G(k, iωn) = G0(k, iωn)

1−G0(k, iωn)Σ(k, iωn) ,

where the poles of the Green function G will depend on the self-energy Σ which is a regular function. This self-energy
is the exact irreducible one which is composed of the sum of all the 2-leg diagrams which cannot be separated in
two disjunct pieces by severing one propagator (this is what the term irreducible means).

At second order in perturbation theory, this self-energy contains the following terms :

Σ = + + + + + + +

︸ ︷︷ ︸
Second order

The first second order diagram for the self-energy is the bubble diagram which is quite important. We will
compute it in the tutorial. The second one is the rainbow diagram. Calculating these diagrams is actually already
difficult at second order as you will see. Therefore, at higher order, the number of diagrams will explode and their
analytical calculation becomes problematic not to say hopless. Fortunately, not all of them are important. We clearly
see that we will need to develop some numerical techniques to generate ansd especially evaluate them. Such method
exists ans is called Diagrammatic Monte Carlo method.

Example : To illustrate these results, we consider a short-range interaction such that

VA(q) = 4π~2a

m
, V‖(q) = 0.

The self-energy which takes into account both the Hartree and Fock terms (here the Fock term is zero)) reads

ΣHFσ (k, iωn) = VA(0) 〈n−σ〉 ∈ R.

The self-energy is here real. This indicates that its main effect is to shift the chemical potential. No broadening is
obtained at this order. We need to go to higher order in perturbation theory to find some imaginary part to the
self-energy. Gathering all previous terms, we find

ΣHFσ (k, iωn) = 4π~2a

m

k3
F

6π2 .

Introducing this expression back into our Green function, we finally obtain

G(k, iωn) = 1
iωn −

(~2k2

2m − µ
)
− ΣHF

.

The self-energy being real, the poles of G(k, iωn) are obtained for iωn = 0 which enables to define the chemical
potential as a function of kF as

µ− εkF − ΣHF (kF , iωn = 0) = 0. (3.11)

This equation is actually general and define the Fermi surface in an interacting problem of fermions.
In our case (at T = 0), we do have therefore

µ = ~2k2
F

2m + ΣH = ~2k2
F

2m

(
1 + 4

3πkFa+ · · ·
)
. (3.12)
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For a Fermi liquid, whatever the interactions are, the following relation holds :

n = n↓ + n↑ = k3
F

3π2 .

This is known as the Luttinger theorem and we will not demontrstate it. Notice that we already demonstrate it for
non-interacting fermions in Chap. 1. The point is that it holds for interacting fermions provided the Fermi surface
(momentum) is defined accordingly as in Eq. (3.11).

The chemical potential is defined as the derivative of the energy with respect to N the number of particles. The
ground state energy therefore reads

EGS =
∫ N

0
dN ′µ(N ′).

Utilizing the following result ∫ N

0
dN ′kλF = 3

3 + λ
kλFN,

we infer the energy per particle of a non-perfect Fermi gas :

EGS
N

= ~2k2
F

2m

(
3
5 + 2

3πkfa+ · · ·
)
. (3.13)

Another way to compute the ground state energy per particle is possible using the partition function which can
be written as a product of the non-interacting partition function times an interacting one :

Z = Z0 〈Tτe
−
∫ β

0
duṼ (u)〉 .

We can thus deduce the free energy as

F = − 1
β

lnZ = − 1
β

lnZ0 −
1
β

ln 〈
[
Tτe
−
∫ β

0
duṼ (u)

]
〉.

The first term simply provides the non-interacting free energy F0 while the second can be calculated by a diagram-
matic expansion which at first order is limited to the Hartree and Fock terms

δF = + .

However, spin conservation at the vertex forbids the second Fock term and only the Hartree term VA(0)n↓n↑ subsists.
The first order contribution provides the energy per unit volume as

δF

V
= VA(0)n↑n↓ = 4π~2a

m

k3
F

6π2
k3
F

6π2 = 4π~2a

m

N

2V
k3
F

6π2 ,

and finally, we also recover the first order contribution to the free energy as

δF

N
= ~2k2

F

2m

(
2

3πkFa
)
. (3.14)

As a final remark, I would like to emphasize that we just scratch the surface and present first order diagrams.
There techniques to resum some class of diagrams such as the RPA or the parquet resummation techniques which
we will not discuss. We minaly focuss on the teh single-particle Green function and asscociated self-energy. However,
we are interested in 2-particle correlation function, we need to take into account the renormalization of the vertex
therefore of the interaction itself. This involves other class of diagrams with four legs.
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3.7 Diagrammatic approach of the resonant level model
Let us apply the diagrammatic method to a problem we already solved. We thererfore reconsider the resonant

level Hamiltonian
Ĥ =

∑
k

εk ĉ
†
k ĉk + εdd̂

†d̂+ t√
V

∑
k

(
ĉ†kd̂+ h.c.

)
.

Exercice : Using a diagrammatic approach, calculate the Green function

Gd(τ − τ ′) = −〈Tτ d̂(τ)d̂†(τ ′)〉 = −〈Tτ d̃(τ)d̃(τ ′)e−
∫ β

0
duṼ (u)〉

〈Tτe
−
∫ β

0
duṼ (u)〉

.

The interaction couples a discrete level |d〉 to a continuum |c〉. The interaction Hamiltonian thus reads Ĥint =
t√
V

∑
k

(
ĉ†kd̂+ h.c.

)
. Since the problem is quadratic, the diagrammatic apptroach is a priori is not really needed

here. Our goal is only to illustrate it. The interaction being 2-body, the diagrams are only linear here. The 0th order
of the expansion is simply given by the bare propagator :

G0
d(iωn) = 1

iωn − εd
.

The first order term implies a single vertex interaction t/
√
V , connecting the states |c〉 and |d〉. Because 〈ĉ†d̂〉0 = 0

(the bare Hamiltonian does not connect |c〉 and |d〉), the first order term is 0. Actually, from the Wick theorem, this
is true for all terms contianing an odd number of |c〉 or |d〉 states. Therefore, only the contribution with an even
number of vertex are non zero. In particular, the second order diagram is given by

The contribution of this diagram to the Green function can be written as

G
(2)
d = G0

d(iωn) t√
V

∑
k

G0
k(iωn) t√

V
G0
d(iωn),

where G0
k(iωn) = 1

iωn−εk is the bare Green function for the state |k〉 We need to sum over all momenta since
momentum conservation implies that only the initial and final momenta to be the same (actually the impurity
breaks translation invariance so we need to sum over all possible momenta). However, energy conservation implies
that the Matsubara frequencies should be the conserved for all vertex. Therefore all intermediate Green function
should be taken at the same pulsation iωn.

We can continue the expansion for all even orders to obtain the contribution of order 2n denoted Gn to simplify
the notations

Gnd = G0
d

(
t2

V

)n(
G0
d

∑
k

G0
c

)n
.

Suming these terms, we recover a geometric series and we finally can write

Gd(iωn) = G0
d

1− t2

V G
d
0
∑
kG

c
0
,

hence
Gd(iωn) = 1

iωn − εd − t2

V

∑
k

1
iωn−εk

.

This expression is similar to the one we obtained previsouly without resorting to a diagrammatic calculation. We
can then identify the self-energy by performing the usual analytic continuation iωn → ω + i0+.
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3.8 Electron-phonon interaction
Consider the following Hamiltonian describing the interaction between electrons and phonons

Ĥ =
∑
k,σ

εk ĉ
†
k,σ ĉk,σ +

∑
q

ωq b̂
†
q b̂q +

∑
q

gq(b̂−q + b̂†q)
∑
k

ĉ†k ĉk+q. (3.15)

In this Hamiltonian, the first two terms designate the electrons and the phonons respectively, while the V̂
interaction is contained in the third term. In the latter, we have on the one hand the Fourier transform of ϕ̂(x) =∑
q (b̂−q + b̂†q)eiqx, ans also n̂q the Fourier transform of the electron density of the system. We will as before write

our Hamiltonian in the form of a sum of two terms

Ĥ = Ĥ0 + V̂ ,

where obviously the bare Hamiltonian is made up of the first two terms of Eq. (3.15).
We will describe this problem in terms of Feynman diagrams. The basic vertex of this problem is depicted in

Fig. (3.5.a). However, as we are going to be interested in the electronic Green function, we find that this type of
vertex contributes zero when it does appear only once, and only diagrams with an even number of vertex make a
non-zero contribution. These vertex are of the form in Fig. (3.5.b).

(a) (b)

Figure 3.5 – (a) Simple vertex (b) Vertex with a non-zero contribution

The considered interaction is therefore a retarded interaction mediated via a phonon carrying a q wave vector
and a frequency ω3. At each vertex of this type a factor g2

qD0(q, ω3) should be associated. The construction rules
of the Feynman diagrams are in this case the same as for interacting electrons. In particular the sign of each of
the contributions is given by (−1)F+n/2 (where n is the number of electron-phonon vertex and F the number of
fermionic loops). The bare Green function is given by

D0(q, iω3) = 2ωq
(iω3)2 − ω2

q

,

while the Green function in the time and position domain is defined by

D(x− x′, τ − τ ′) = −〈Tτ ϕ̂(x, τ)ϕ̂(x′, τ ′)〉 .

3.8.1 Electronic self-energy
The lowest order diagrams to be used are of the Fock and Hartree type. The Hartree tree only generates a shift

of the chemical potential, and therefore only the Fock term will have a real importance. We will therefore calculate
only the contribution of the Fock term to the self energy, that is to say

ΣF (k, iωn) = −T
∑
q,iνn

g2
qG0(k − q, iωn − iνn)D0(q, iνn), (3.16)

that we can write using the explicit form of G0 and D0 as

ΣF (k, iωn) = −T
∑
q,iνn

g2
q

1
iωn − iνn − εk−q

2ωq
(iνn)2 − ω2

q

.
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The last term corresponding to D0 can be expanded as a sum of simple elements, and we get

ΣF (k, iωn) = −T
∑
q,iνn

g2
q

(
1

iωn − iνn − εk−q
1

iνn − ωq
− 1
iωn − iνn − εk−q

1
iνn + ωq

)
. (3.17)

On these two terms we observe that we can get one from the other by simply changing ωq to −ωq, and so we can
simply focus on the calculation of only one of these terms.

Figure 3.6 – Pôles de F (z)

We should evaluate a sum like −T
∑
iνn

F (iνn) corresponding as we have seen previously to a summation
on the Matsubara poles of the function −F (z)nB(z). For bosons, ResnB(z)|z=iνn = T , whereas for fermions
ResnF (z)|z=iωn = −T . The poles of F (z) are of two types (see Fig. (3.6)). The first ones correspond to the
Matsubara frequencies and are purely imaginary. The second ones correspond to the points iωn − εk−q and ωq.
The term TF (iνn) corresponds to the integral on a contour represented in black in the figure of the function
F (z)nB(z)/2iπ. By performing a continuous deformation of these contours, we can merge them to obtain a new
contour whose shape is represented in red going from −∞ to +∞ on the imaginary axis and remaining close to
the origin on the real axis. It is possible to complete this contour with two circular arcs represented here in green.
The two contours C1 and C2 obtained by joining the red and green contours thus give us contours surrounding the
two poles that can be continuously deformed until they form two circles surrounding them (represented in blue).
Ultimately, our sum −T

∑
νn
F (iνn) can be rewritten as

−T
∑
νn

F (iνn) =
∫
C1

dz

2iπnB(z)F (z) +
∫
C2

dz

2iπnB(z)F (z)

= nB(ωq)
1

iωn − ωq − εk−q
− nB(iωn − εk−q)

1
iωn − εk−q − ωq

= nB(ωq)− nB(iωn − εk−q)
iωn − εk−q − ωq

.

Note that this result can be obtained directly using the general equation we derived to calculate summation over
Matsubara frequencies in Sec. 2.4.3. Using the fact eiβωn = 1, we can transform the Bose-Einstein distribution into
a Fermi-Dirac distribution :

nB(iωn − εk−q) = −1 + nF (εk−q).

Therefore,
−T

∑
νn

F (iνn) = nB(ωq) + 1− nF (εk−q)
iωn − εk−q − ωq

,



3.8. ELECTRON-PHONON INTERACTION 35

which provides us finally

ΣF (k, iωn) =
∑
q

g2
q

[
nB(ωq) + 1− nF (εk−q)

iωn − εk−q − ωq
+ nB(ωq) + nF (εk−q)

iωn − εk−q + ωq

]
. (3.18)

In this expression, we can identify the first term with an emission phenomenon and the second with an absorption
phenomenon.

We will now perform an analytical continuation of our self-energy to obtain ΣF (k, ω+ i0+), namely we perform
the transformation iωn → ω + i0+. The imaginary part of ΣF (k, ω + i0+) now reads

=
[
ΣF (k, ω + i0+)

]
= −π

∑
q

g2
q ([nB(ωq) + 1− nF (εk−q)] δ(ω − εk−q − ωq) + [nB(ωq) + nF (εk−q)]δ(ω − εk−q + ωq)).

We will now use the following two identities

nB(ωq) + 1− nF (εk−q) = (1 + e−βω)(1 + nB(ωq))(1− nF (εk−q)) where ω = εk−q + ωq (3.19)
nB(ωq) + nF (εk−q) = (1 + e−βω)nB(ωq)[1− nF (εk−q)] where ω = εk−q − ωq. (3.20)

The imaginary part of the self-energy reads

−=
[
ΣF (k, ω + i0+)

]
= π

∑
q

g2
q (1 + e−βω)(1− nF (εk−q)) [(1 + nB(ωq))δ(ω − εk−q − ωq) + nB(ωq)δ(ω − εk−q + ωq)].

In the factor 1 + e−βω, we have two competing processes, on the one hand the electronic processes and on the
other hand the hole processes. Concerning the terms that multiply the Dirac functions, the first is related to an
emission process while the second is related to a phonon absorption process. Indeed for the emission ω = εkq + ωq,
an incident electron of energy ω is diffused and produces an electron of energy εkq and a phonon of energy ωq. On
the contrary, in the case of an absorption process ω + ωq = εk−q, an incident electron of energy ω and a phonon of
energy ωq interact to form an electron of energy εk−q (here we used the fact that ωq is an even function of q due to
the Hamiltonian symmetry).

Coming back to our initial self-energy, we have

ΣF (k, z) =
∑
q

g2
q

[
1 + nB(ωq)− nF (εk−q)

z − (εk−q + ωq)
+ nB(ωq) + nF (εk−q)

z − (εk−q − ωq)

]
.

This quantity is in general difficult to evaluate. However we can assume that the k dependence is much weaker than
the ω dependency. Therefore we replace the self-energy by its average over k assuming that the k-dependence is weak
or more specifically by its average over energy. We are thus led to define the new quantities Σ̃F (z) corresponding
to the sum over k of ΣF (k, z) :

Σ̃F (z) =
∑
k

ΣF (k, z) =
∫ +∞

−∞
dερ0

∫ +∞

0
dνα2(ν)F (ν)

[
1 + nB(ν)− nF (ε)

z − (ε+ ν) + nB(ν) + nF (ε)
z − (ε− ν)

]
, (3.21)

where ρ0 is the electronic density of states, F (ν) is the density of states for the phonons
∑
q δ(ν − ωq), and α2(ν)

a function able to keep trace of the q dependency of g2
q .

For the case of phonons ωq = c|q| ≥ 0 which generates the lower bound 0 for the summation over the pho-
nons’energy. At T = 0, nB(ν) = 0 while nF (ε) = θ(−ε). Our average self-energy then becomes

Σ̃F (z) =
∫ +∞

0
dνρ0α

2(ν)F (ν) ln
[
ν − z
ν + z

]
,

that we can write as
Σ̃F (ω) = Σ̃(0)− λω, (3.22)

where
λ = −∂<Σ̃F

∂ω
= 2

∫ +∞

0
dνρ0

α2(ν)F (ν)
ν

,

whose value is of order 0.1 or 0.2 for metals.
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3.8.2 Electronic Green functions
We can then write our Green function for electrons

G(k, ω + i0+) = GR(k, ω) = 1
ω − εk − Σ̃F (ω)

= 1
ω − ε∗k − λ(ω − ε∗k) + iΓ , (3.23)

where we defined

ε∗k = εk + <Σ̃F (ε∗k)
Γ = −=Σ̃F .

We can finally put our Green function in the form

GR(k, ω) = Z

ω − ε∗k + iΓ∗ , (3.24)

where Z = 1
1+λ < 1 et Γ∗ = ΓZ.

We can infer from this expression the effective mass dεk
dε∗
k

= m∗

m = 1 + λ > 1. The quantity Z corresponds (at
T = 0) to a jump in the density of states nk at the Fermi wave vector kF generated by the electron-phonon coupling
(see Fig. 3.7).

Figure 3.7 – Electronic density at T = 0 with an electron-phonon coupling.

This is then possible to determine the heat capacity C = γ∗T where γ∗ = π2

3 k
2
BN

∗(0) with N∗(0) = N(0)(1+λ).
The density of state is therefore proportional to the mass.

3.8.3 Phononic Green functions
We just see in the previous section how the single particle Green function is dressed by phonons. We can

obviously wonder how the single phonon propagator is dressed by the electrons.
The lowest non-zero diagram for the phonon propagator is sketched in Fig. 3.8.

Figure 3.8 – Second order diagram of the phonon propagator renormalized by the electrons

Energy and momentum conservation imply iνn = iω1 − iω2 and k = k1 − k2.
If we call D(k, iνn) the renormalized phonon propagator and D0(k, iνn) the bare one, we have

D(k, iνn) = D0(k, iνn) +D0(k, iνn)Π(k, iνn)D0(k, iνn) +D0(k, iνn)Π(k, iνn)D0(k, iνn)Π(k, iνn)D0(k, iνn) + · · ·
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We can resum the series to write
D(k, iνn) = D0(k, iνn)

1−Π(k, iνn)D0(k, iνn) ,

where Π(k, νn) corresponds to a fermionic contribution to the phonon self-energy. We already met Π before because
Π corresponds to a four-point fermionic correlation function and more precisely to a density-density correlator.

Using the notation of Fig. 3.8,

Π(k, νn) = 1
Vβ

∑
k1,iω1,n

|gq|2G0(k1, iω1,n)G0(k1 − k, iω1,n − iνn).

The calculation of Π(k, νn), the so-called fermionic bubble will be done in the exercice part.



Chapitre 4

Introduction to quantum impurity
models

4.1 Anderson and Kondo models
Quantum impurities take place when a finite size quantum system couples to a free electron bath. Historically,

this applies to atomic impurities in metals. However, the above definition is quite general and encapsulates all sorts
of defects in a bath. Therefore the number of models which could describe such system is quite large. However,
as usual we rely on a few paragdigmatic models which are to play a key pivotal role in our understanding of this
physics. The first of these models is the Anderson model whose Hamiltonian is written

Ĥ =
∑
k,σ

εk ĉ
†
k,σ ĉk,σ +

∑
σ

εdd̂
†
σd̂σ + Un̂d↑nd↓ +

∑
kσ

(
Vk ĉ
†
k,σd̂σ + h.c.

)
. (4.1)

This Hamiltonian describes the interaction between an electronic bath represented by the creation operators ĉ and a
discrete level represented by the creation operators d̂. These two states interact via a term Vk which couplies states
|c, kσ〉 and |d, σ〉. The interaction within each of these states is contained for the bath by the kinetic energy εk and
for the discrete state by the kinetic energy εd to which we add a Coulomb-like interaction between the electrons of
different spins via the energy U . Notice that we already met the Anderson model but at U = 0.

The second model we will encounter is the Kondo model which describes a magnetic impurity. The Hamiltonian
reads :

Ĥ =
∑
k,σ

εk ĉ
†
k,σ ĉk,σ + JK

∑
k,k′

~̂Sĉ†k~σĉk′ + hŜz + h
∑
k

ĉ†kσ
z ĉk. (4.2)

Here, the bath is coupled to a spin ~̂S with the Kondo coupling energy JK . This is a local magnetic exchange
interaction between the bath and a magnetic impurity localized say in ~r = 0. This Hamiltonian also includes the
interaction with a magnetic field h. The impurity is assumed to be at rest, therefore its kinetic energy is not taken
into account.

There are many other variants and extension of this model. In particular, we can consider large spin S > 1/2,
by increasing the number of orbitales |d〉 (in the Anderson model) or by increasing the number of impurities (in
the Kondo model). One can also take into account, some internal degrees of freedom in the bath which increases
the numbe rof independent channels that couples to the impurity. As we will see, this leads to highly non-trivial
physics which will push us away from the Fermi-liquid paradigm.

These systems are correlated systems contrasting with the case of the one-body problem where the Hamiltonian
reads

Ĥ =
∑
k,σ

εk ĉ
†
k,σ ĉk,σ +

∑
kk′

Vkk′ ĉ
†
k ĉk′

The single-particle problem is trivially solved by exact diagonalization. However, the Anderson and Kondo problem
belong to many-bodu problems. Let us consider the case of the Kondo model with the isolated spin in a σ orientation
coupled to the bath. If an electron interacts with this spin, this spin can, because of the term Jk ĉ

† ~̂S · ~σĉ, modify
its orientation. If a second electron interacts later with this spin, its orientation having been modified, this will

38
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further induce correlations between the two electrons in an indirect way. The spin-flip induces correlations between
electrons all together.

4.2 Physical Motivation
4.2.1 Magnetic impurities in a metal

The presence of magnetic impurities in a metal can have physical consequences. Indeed, it has been measured
in experiments as early as the 1930s that the low temperature resistivity of certain metals, instead of uniformly
tending toward a minimum value ρ0 at zero temperature, showed a rise in resistivity. Indeed, in the case of Fermi
liquids where the interactions are between electrons, the behavior of the resistivity is in T 2, whereas for the case
of interaction via phonons, the evolution is done in T 3. The relative difference measured between ρ0 and this new
resistivity is of the order of 1 to 4%. This is thus a small and extremely reproducible shift. This behavior can in
particular be observed in the case where a metal like Cu has Mg magnetic impurities.

This behavior was explained by Kondo in 1964 [4]. It thus determines the temperature scale TK from which the
resistivity starts to leave the behavior in Tn as a function of the interaction parameters of the Hamiltonian in (4.2).

4.2.2 Quantum dots

Figure 4.1 – Scheme of a quantum dot

The theory of transport in quantum dots dates back to 1988 .
The experimental realization of the Kondo effect in quantum dots
dates follows ten years later in 1998. A simple Hamiltonian able
to describe such system can be written as

Ĥ =
∑
σ,α

εk ĉk,α,σ ĉk,α,σ + εdd̂
†d̂+

∑
k,σ,α

(Vk ĉ†kασd̂σ + h.c.),

where α denotes the left or right electrode and d̂† is the creation
operator of an electron in the quantum dot (see figure (4.1)).
This system is thus described by a Hamiltonian close to Anderson’s
Hamiltonian. The theoretical problem in these systems will be to
determine the current I in response to a voltage V as well as the
correlations 〈II〉. One can observe similar transport observables when a molecule is inserted between two electrodes.

These days, some highly asymmmetric mixture of cold atoms may also offer a description of such system.

4.2.3 Theoretical motivation : Dynamical mean field theory
The Ising model is well known in statistical physics. The Ising Hamiltonian

H = −J
∑
ij

SiSj .

can be solved approximately using a mean field theory approach which was first introduced by [5]. In the mean field
approximation, the effective Hamiltonian reads

Heff = −heffS,

where heff denotes the effective magnetic field created by the neighbours of S. To this Hamiltonian, it is necessary
to add a condition of self-consistency by writing the effective field as a function of the mean spin

heff = f(〈S〉).

Let us assume we want to follow the same strategy to solve the Hubbard model. The quantum analogue of the
Hubbard model in the dynamic mean field approach becomes an Anderson impurity model with self-consistency
conditions via effective energies V eff and εeffd . We then find ourselves in the presence of an effective electron bath.
Therefore, within this approximation, the Anderson model becomes the central ingredient. Therefore, it is crucial
to develop some effcient numerical solution of the Anderson model (called an impurity solver) in order to use it as
the core in a DMFT approach.
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4.3 Anderson model
4.3.1 Atomic limit

The atomic limit corresponds to Vk = 0. In this limit, the Anderson Hamiltonian reads

Ĥ =
∑
σ

εdd̂
†
σd̂σ + Un̂d↑n̂d↓.

We then have four eigenstates that are formed from the different spin states allowed by Pauli’s principle,

|0〉 , |↑〉 , |↓〉 , |↑↓〉 .

The first of these states has zero energy, the second one (degenerate with the third) has a εd energy and the last one
has an energy 2εd + U energy. The density of states of such a system consists of a set of peaks located at energies
corresponding to the energy difference between two states whose number of particles differs from 1. In this case, we
would have two peaks (of modulated amplitude) located at the energy εd and εd + U .

The number of particules in a given spin state is given by

nσ = nd
2 =

nd↑ + nd↓
2 = e−βεd + e−β(2εd+U)

1 + 2e−βεd + e−β(2εd+U) .

The energy dependence of this distribution is represented on the figure (4.2)

Figure 4.2 – Number of particles with spin ↑ as a function of εd in the atomic limit of the Anderson model. The
dashed line is the limit T → 0.

Between εd = −U and εd = 0, the system is in the local moment regime where the ground state contains one
electron. For S = 1/2 we can then ask ourselves what is the Hamiltonian that will be obtained in the limit U →∞
and εd → −∞ when the coupling to the bath V is switched on. One can therefore treat this coupling in perturbation
theory and projects the obtained Hamiltonian in the nd = 1 state. One obtains an effective Hamiltonian which reads

Ĥeff =
∑

εk ĉ
†
kσ ĉkσ +

∑
k

Jkk′ ĉ
†
ks
~̂S · ~σss

′

2 ĉk′s′ +
∑
k,k′,s

V̄kk′ ĉ
†
k,sĉk′s. (4.3)

Notice that the term containing the spin ~S is the only one allowed by the SU(2) symmetry. As for the term V̄ , this
is a scalar term that will be neglected because it does not bring further correlations.

In order to relate the coupling Jkk′ of the Kondo Hamiltonian to the parameters of the Anderson Hamiltonian,
we can perform a second order perturbative calculation in V . We therefore have to calculate the effect of the
process depicted in Fig. 4.3. The difference in energy between the ground state and the excited states |0〉 and |↑↓〉
are (E0 − E1) ≈ εF − εd and (E2 − E1) ≈ εd + U − εF respectively. We therefore obtain at second order

JK ≡ Jkk′ ≈ V 2
(

1
εd + U − εF

+ 1
εF − εd

)
(4.4)
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Figure 4.3 – In order to determine the expression of JK at second order in perturbation theory, we shall find the
energy difference between the ground states |↑〉 , |↓〉 and the excited states |↑↓〉 et |0〉.

4.4 Summary of the main results related to the Kondo model
4.4.1 Perturbative approach

The resolution of the Kondo model goes through a perturbative analysis in Jk. From these calculations, we can
determine the susceptibility, the heat capacity and the resistivity as

χimp = (gµB)2S(S + 1)
3T

(
1− 2JKρ0 − (2JKρ0)2 ln D

T

)
(4.5)

Cimp = π2S(S + 1)(2Jρ0)4
(

1 + 8Jρ0 ln D
T

)
(4.6)

Rimp = 3πmS
2e2~εF

(
J2 + 4J3ρ0 ln D

T
+ · · ·

)
, (4.7)

where D is the band width and ρ0 the density of states at the Fermi level. We find in each of these terms a lo-
garithmic dependence diverging at zero temperature and when sending D → ∞. This divergence is an artefact of
the perturbative expansion and is cured by the terms of higher order. However, this calculation first performed by
Kondo pridcts correctly a rise of the resistivity as observed experimentally.

Excercice : Can you recover the first two terms in the expansion of χimp in Eq. (4.5) ?

Notice that all the above expressions can be rewritten in terms of some effective coupling

Jeff (D) = Jρ0

(
1 + 2Jρ0 ln D

T

)
.

If we make this substitution, the thermodynamic quantities depend only on Jeff (D) and the divergences disappear :
they are absorbed by the redefinition of the Kondo coupling which now beomes scale-dependent. The divergence
results from an inconsistency of the perturbative expansion in which the term of first order becomes larger than the
term of order 0. This will clearly be the case if the temperature is very small. However this is not the case if the
temperature is extremely large kBT . D in which case the pertubative expansion makes sense and is controlled.
One can thus determine a limiting temperature, called Kondo temperature below which these expressions are
not valid any more. The Kondo temperature is defined as

2Jρ0 ln D

TK
= 1,
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which provides
TK = De−

1
2Jρ0 . (4.8)

We therefore have two different temperature regimes T � TK and T � TK . These regimes are not separated by
a phase transition. TK corresponds to a crossover scale separating these two regimes. At large T � TK , we have
essentually a free spin and therefore a Curie law. Eventually, we can resum the perturbative series of the logarthmic
divergence (see Fig. 4.4). However, the perturbative calculation of Kondo does not explain the behaviour at low
temperature. This corresponds to the strong coupling regime in which we have the impression that the effective
Kondo coupling grows infinitely. However, this cannot be the case. Actually, if we set JK → ∞ in the original
Kondo model, the physics is quite clear. The ground state is obtained when one electron forms a singlet with the
spin of the impurity and therefore screens it. Once screened, we expect to recover a Fermi liquid behavior. This is
actually what is found. Therefore, at low T, we expect to recover a Pauli susceptibility because the impurity has
been screened. The expected qualitative behavior is this sketched in Fig. 4.4.

Figure 4.4 – Qualitative behaviour of the impurity susceptibility χimp = χtot − χPauli with temperature.

One can perform the same analysis for the other quantities such as the resistivity or the specific heat. The
Fermi-liquid approach to the strong coupling fixed point of the Kondo problem was developed by Nozieres in 1974
[6] in a very elegant and thoughful paper. We won’t develop it here though we have all tools to do it.

4.4.2 Renomalization group and universality
The above perturbative suggests to absorb the logarithmic divergences with a redefinition of the Kondo coupling :

Jeff (D) = Jρ0

(
1 + 2Jρ0 ln D

T

)
.

The Kondo coupling becomes scale-dependent. This suggests to use the renormalization group (RG) to the
Kondo problem. The idea of the RG is integrate out the conduction electron ck for k far from kF , the Fermi wave-
vector, and successively reduce the band-width D to obtain a new effective interaction. [See Figure (4.5).] This is
hard to do exactly. At weak coupling one can do it perturbatively in the dimensionless coupling λ = 2Jρ.

This is equivalent to renormalize the Kondo interaction. This calculation will be done as an exercice at the end
of this chapter. We find

λ(D′) = λ(D)λ2 ln( D
D′

).

Writing D = D′ + δD with δD � D, we obtain a differential equation for λ

dλ

d lnD = −λ2. (4.9)
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Figure 4.5 – Reduction of the cut-off from D to D′.

We see that lowering the band cut-off increases λ or, defining a length-dependent cut-off, l ∼ vF /D, the equation
becomes

dλ

d ln l = λ2. (4.10)

Integrating the equation (this is equivalent to performing an infinite sum of diagrams), gives :

λeff(D) = λ0

1− λ0 ln D0
D

. (4.11)

If λ0 > 0 (antiferromagnetic interaction), then λeff(D) diverges (typically becomes of order O(1) and thus uncon-
trolled) at the scale D ∼ Tk ∼ D0e

− 1
λ0 = D0e

− 1
2Jρ0 . If λ0 < 0 (ferromagnetic interaction), λeff(D) → 0. We can

represent this behavior as a 1D flow of renormalization as sketched in Figure (4.6).

Figure 4.6 – RG flow of the Kondo coupling.

From the flow depicted in Fig. 4.6 the Kondo coupling grows when the scale D decreases (i.e. in the infrareed
limit). Conversely, at high energy the Kondo coupling goes to zero. Therefore, in the high energy limit, the system
becomes asymptotically free. This concept is called asymptotic freedom. This is a property of some gauge theories
that causes interactions between particles to become asymptotically weaker as the energy scale increases and the
corresponding length scale decreases. Asymptotic freedom is a feature of quantum chromodynamics (QCD), the
quantum field theory of the strong interaction between quarks and gluons, the fundamental constituents of nuclear
matter. Quarks interact weakly at high energies, allowing perturbative calculations.

Another remarkable consequence of the RG flow is that all thermodynamical observable depends on a single
variable O(T ) = f(T/TK) where f is a universal scaling function. Therefore, if we measure the susceptibilities for
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different samples with different impurities, on the measurements should rescale on a single universal curve provided
we plot them as a function of T/TK . If a magnetic field is added to the system, then the observable becomes a
2-parameter scaling function O(T ) = g(T/TK , H/TK).

For impurities in metals, the Kondo temperature depends on the type of impurities and of the density of states.
It can be a few Kelvins or tens of Kelvin in metals. In quantum dots, the Kondo temperature if of order of the
Kelvin.

We start from a isotropic Kondo interaction to derive these results. One may wonder if these results survive if
we break the spin SU(2) rotation symmetry. A general anisotropic Kondo interaction can be written as

Hani
K = JzŜ

z ĉ†(0)σz ĉ(0) + J⊥(Ŝ+ĉ†↓(0)ĉ↑(0) + Ŝ−ĉ†↑(0)ĉ↓(0)).

Exercice Show that for J⊥ = Jz, you recover the isotropic Kondo Hamuiltonian
Introducing the dimensionless Kondo coupling λz/⊥ = 2ρ0Jz/⊥, one can derive the following RG equations :

dλz
d ln l = λ2

⊥, (4.12)

dλ⊥
d ln l = λ⊥λz. (4.13)

One can notice that if J⊥ = 0, the system does not flow. There is no divergence. Indeed, this corresponds to an
Ising like interaction. This shows that this is really the spin-flip term that drives the system to the strong coupling.

Exercice Integrate the above system of differential equations and plot the 2D flow of renormalization. Hint : It
is like a Kosterlitz-thouless flow. What happens if we start with different initial coupling Jz 6= JP erp in the infrared
limit ?

4.4.3 Multi-channel Kondo model
I will follow here the review of Affleck [7]. Normally there are several “channels" of electrons e.g. different d-shell

orbitals. A very simple and symmetric model is :

H =
∑

~k,α,i=1,2,...k

ε~kψ
†αi
~k
ψ~kαi + λ~S ·

∑
~k,~k′α,βi

ψ†αi~k
~σβαψ~k′βi, (4.14)

where k denotes an extra “channel” quantum number. This model has SU(2)× SU(k)× U(1) symmetry. Realistic
systems do not have in general this full symmetry. However, this model turn out to be very useful to classify the
different possible behavior that can occur when a impurity of spin S coupled to k-channels of electron.

Perturbation theory in λ = 2ρ0J is similar to the result mentioned before. The RG equation reads

dλ

d lnD
= −λ2 + k

2λ
3 +O[ks(s+ 1)λ4] (4.15)

There are many things we can extract from the flow equation particularly in the large k limit. Indeed, the above
differential equations predict a fixed point in λ = 0, λ→ +∞ but also some intermediate fixed point at λc = 2/k.
The point is that in the large k limit, such fixed point is still within reach of perturbation theory. We can analyze
its stability. The β-function is β = λ2 − k

2λ
3 +O(λ4). The slope of the β-function at the critical point is given by :

dβ

dk

∣∣∣∣
λc

= 2λc −
3
2λ

2
c = −2

k
< 0. (4.16)

This implies that the fixed point is stable in this large k limit. The RG flow is depicted in Fig. 4.7.
Furthermore, the way the flow approaches this fixed point is non-standard. The leading irrelevant coupling

constant at the non-trivial (infrared) fixed point has dimension 2/k at large k, so that (λ− λc) scales as Λ2/k. This
is not an integer. This implies that this critical point is not a Fermi liquid !

This approach is only valid in the large k limit. One may also learn of what is going on by taking the limit
λ→∞ as T → 0 and check the consistency. What is the groundstate for the lattice model generalized to arbitrary
k and s, at λ/t→∞ ? In the limit we just consider the single-site model

H = J ~S · ψ†0
~σ

2ψ0, (4.17)
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Figure 4.7 – RG flow of the Kondo coupling in the overscreened case.

Figure 4.8 – Formation of an effective spin at strong Kondo coupling. k = 3, s = 1 and seff = 1/2.

For J > 0 (antiferromagnetic case) the minimum energy state has maximum spin for electrons at ~0 i.e. spin = k/2.
Coupling this spin-k/2 to a spin-s, we don’t get a singlet if s 6= k/2, but rather an effective spin of size |s − k/2|
[See Figure (4.8)]. The impurity is thus underscreened if (k/2 < s) or overscreened if (k/2 > s).

This leads to two completly different type of physics. In the first (underscreened) case, by performing a strong
coupling analysis (perturbation theory in t/J assuming J � t, one can convince oneself that the hypothesis J →∞
is stable (more specically, one can show that the residual exchange interaction in t2/J is ferromagnetic). Therefore
the strong coupling fixed point is stable. In this case we expect the infrared fixed point to correspond to a decoupled
spin of size seff = s− k/2 and free electrons (actually with a π/2 phase shift).

The situation is drastically for the overscreened case. Take for example k = 2 and S = 1/2. There are two
electrons whcih want to form a singlet with the impurity spin. The problem is somehow frustrated. Indeed, the
residual exchange interaction in t2/J is antiferromagnetic and therefore wants also to flow to strong coupling. So
the hypothesis J → +∞ is unstable in that case. Therefore they must be some intermediate fixed point which is
the one capured in the RG equation in the large k-limit.

Many approaches were used to develop to solve that problem. The k-channel Kondo effect is in fact integrable
using the Bethe-Anzatz. However, from this approach this is not so easy to compute some correlation functions.
A elegant approach was developed by Affleck and Ludwig in the 90s using boundary comformal field theory (see
[7]) which allows to determine analytically the spectrum, the thermodynamical and transport obervables, etc. For
example the impurity susceptibility scales as

χimp =
(

1
T

) k−2
k+2

,
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which confirms the non-Fermi liquid behavior. An interesting quantity is the impurity entropy

Simp = ln
(

sin[π(2S+1)
k+2 ]

sin[ π
k+2 ]

)
.

For example, if we choose S = 1/2 and k = 1, we find that Simp = 0 which means that the spin impurity is
completely screened. Instead for S = 1/2 and k = 2, we find Simp = ln 2/2, i.e. one half of the impurity entropy
of spin 1/2. Actually, .this corresponds to the impurity entropy of a free Majorana fermion ! This is not by chance.
The 2-channel Kondo fixed point offers a description in terms of a free Majorana fermion (half a fermion).

A complementary approach uses the numerical renormalization group but is limited ot three maybe channels
these days. Some very recent experiments with quantum dots have recently confirmed the behavior for the 2-channel
Kondo effect and also the 3-channel Konfo fixed point.

4.5 Back to the Anderson model
4.5.1 U = 0

Let us go back to the Anderson model described by the Hamiltonian

Ĥ =
∑
k

εk ĉ
†
k,σ ĉk,σ + εdd̂

†
σd̂σ + Un̂d↓n̂d↑ +

∑
k

(Vk ĉ†k,σd̂σ + h.c.),

We are interested in this section to the density of states or spectral function ρd = 〈d̂d̂†〉.
Let us remind what we found for U = 0 and V 6= 0. The Matsubara Green function Gd(iωn) reads

G−1
d (iωn) = iωn − εd − Σd(iωn),

where
Σd(iωn) =

∑
k

|Vk|2
1

iωn + µ− εk

denotes the self-energy. Therefore, in the U → 0 limit, we expect the dot density of states (DOS) to be peaked at
ω = εd − Σ′(0) with a Lorentzian shape of width Γ = πV 2ρ0.

4.5.2 U 6= 0, V = 0
We also already discussed the case U 6= 0 and Vk = 0. At the particle-hole symmetry point, εd = −U/2, the

Hamiltonien reads
Ĥ =

(
n̂↑ −

1
2

)(
n̂↓ −

1
2

)
U.

Our spectral function is then composed of two peaks centered around the energy differences between the different
spin states (triplets and singlet) of the system, therefore at ±U/2. When particle/hole symmetry is broken, we
expect two peaks located at ω = εd and ω = εd + U . When Γ is very small, we expect these peaks to broaden.

4.5.3 General case
The previous limiting case ignore the physics of the Kondo effect. Nevertheless, we know that

∫
ρd(ω)dω = 1.

Therefore, if something changes in the local DOS, this must be accompagnied with some transfer of spectral weight.
Let us focus on the p/h symmetric case. We know that at T � TK , the impurity is screened by the conduction

electrons at the Fermi level forming a singlet state. The Fermi liquid is recovered. Therefore such screening process
implies it takes many states at the Fermi level to screen the impurity (remmeber this is a many-body screening
here). We thus expect a resoannce to occur at teh Fermi level. What could be the width of this Fermi level. The
only scale available is TK . Γ. Therefore, we expect that at T ≤ TK , or spectral function to be composed of two
Hubbard bands located in ±U/2 and a Kondo peak at ω = 0. This quasi-particle resonance is called the Abrikosov-
Suhl resonance or Kondo resoannce in the literature. The width of the resonance is given by ' TK while its height
is independent of U . We have ploted what the local DOS should look like in Fig. 4.9.
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Figure 4.9 – Evolution of the de nsity of states with U .

4.6 Kondo effect in quantum dots
4.6.1 Current through a quantum dot

Let us now consider the case of a quantum dot, a system consisting of two electrodes L and R coupled to a dot
(denoted by d). The Hamiltonian of this system is

Ĥ =
∑
k,a

εkαĉ
†
kaĉka +

∑
k

(
Vka,nĉ

†
kad̂n + h.c.

)
+ Ĥdot(d̂†n, d̂n), (4.18)

The Hamiltonian of the dot, Ĥdot, can be quite general at this stage. We are interested in the current 〈I〉 as a
function of the chemical potential difference µL − µR. The current in the a electrode is defined by

Îa→dot = −∂Q̂a
∂t

= i

~
[Ĥ,

∑
k

ĉ†kLĉkL],

which is of order O(V ). Calculating the commutator, we have

Îα→dot = ie

~
∑
k,n

Vka,nĉ
†
kad̂n − Vka,nd̂

†
nĉka.

The expectation value can thus be expressed in terms of the lesser and greater Green functions we introduced in
chapter II.

Ia→dot = e

∫
dω

2π~
∑
kn

[
VkanG

<
n,ka(ω)− V ∗kanG<k,an(ω)

]
. (4.19)

The difficulty is to calculate these (non-equilibrium) Green functions. Fortunately, we can express them using the
Keldysh techniques (that we will not cover neither describe qualitatively) in terms of simple expressions.

Considering the simple case of a symmetrical coupling of the right and left electrodes with the box, the current
between the electrodes is obtained by

I = 1
2(IL→dot + Idot→R) = e

~

∫
dεTr[Γρdot][nL(ω)− nR(ω)],

where Γ = ΓL + ΓR and
Γa(ε) = πρa

∑
nm

Vam(ε)V ∗an(ε),

and ρa is the density of states in lead a = L,R.

4.6.2 Anderson model description
Let us assume that the quantum dot can be described by the Hamiltonian of the Anderson model

Ĥ =
∑
a,k

εk ĉ
†
kaĉka +

∑
ka

V (ĉ†kad̂+ h.c.) + Un̂d↑n̂d↓.
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We remind that the Anderson model is related to the Kondo model when the charge in the impurity (here the
quantum dot) is almost conserved and equal to one. This limit does not prevent (virtual) quantum charge fluc-
tuations. Such second order processes are called elastic cotunneling processes and are depicted in Fig. 4.10. These
fluctuations are responsible of the spin-flip proecesses which at the heart of the Kondo effect.

Introducing Γ ' πρ(0)V 2, the current can be expressed as

I = eΓ
~

∫
dω[nL(ω)− nR(ω)]ρdot(ω), (4.20)

We have thus obtained an expression of the current only in terms of the density of states in the dot whcih is
related to the retarded Green function Grd(ω). This formula is remarkably simple and was derived by Meir and
Wingreen in 1992 [8]. In particular, we find that the linear conductance G = dI/dV reads

G = dI

dV
= e2Γ

~

∫
dω[−∂nF (ω)]ρdot(ω),

where nF is teh Fermi Dirac distribution function. At T → 0, the derivative of the Fermi-Dirac function tends
towards the Dirac distrubtion. Therefore, the linear conductance G → 2e2/h which corresponds to the maximum
possible conductance. This is called the unitary limit. Physically, the screening of the artificial spin impurity (the
spin of the quantum dot) by both electrodes leads to a perfectly coherent transmitting channel between the two
electrodes.

In case of asymmetric coupling, we can generalize the afoermentioned calculations to find that the linear conduc-
tance at T = 0 reads

G→ 2e2

h

4ΓLΓR
(ΓL + ΓR)2 ≡ GU .

At finite temperature, and finite bias eV � |εd|, U , one expects from the universality of the Kondo regime

G ≈ GUg
(
T

TK
,
eV

TK

)
,

where g is some universal scaling function. This has been checked in numerous transport experiments in quantum
dots. Experimentally, these calculations predicts that when the number of electrons in the quantum doty is odd,
which means in our Anderson model description nd ∼ 1, the conductance at T, eV � TK reaches a plateau of
maximum conductance which is insensitive to to Vd ∝ εd as soon as nd ≈ 1. This has been obversed experimentally
and is reproduced in Fig. 4.10.
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Figure 4.10 – Upper : cotunneling effect. Lower : Kondo resonance appearing at the Fermi level. Evolution of the
conductance with temperature. At low T � TK , plateaus of unitary conductance are observed for N=1 and N=3.
From van der Wiel et al., Science 289, 2105 (2000)
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