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TD No 1 : Klein tunneling in graphene

1 Introduction : plane waves
The goal is to compute the probability transmission T of a graphene electron across a potential step or

barrier. We assume the barrier to be smoothed at the lattice scale a ∼ 0.1 nm but sharp at the wavelength scale
λF . Why such assumptions ? The single valley hamiltonian is :

H = vFp · σ + V (r) (1)

where the potential V is constant in some finite area of space. In the following we take ~ ≡ 1 and vF ≡ 1.

1) We first consider a constant potential V (r) = V0. We are looking for plane waves solutions in the graphene
sheet of area A = 1. Why can we restrict to the single valley Hamiltonian. Show that the (spinorial) plane wave

ψ(r) =
eik·r√

2

(
1

αeiθk

)
(2)

is an eigenvector of the hamiltonian with eigenenergy E = αk+V0 where k is the wavevector (we assume kx, ky
real), tan θk = ky/kx gives the x-axis angle, α is the band index defiend by α = sgn(E − V0).

2a) The velocity operator is defined as ~̂v ≡ ~̇r. Using the Heisenberg equation of motion for the Dirac
Hamiltonian in Eq. (1), express ~̂v.

2b) Show that the average velocity of a plane wave of momentum ~k and band index α is

~v ≡ 〈~k, α|~̂v|~k, α〉 = α
~k

k
(3)

2c) For α = −1 – i.e. when the electron is in the valence band and has a negative kinetic energy – compare
the direction of the wavector to the direction of the propagation of the wave (i.e. to the velocity). Any comment ?

2d) The probability density of the state |ψ〉 is |ψ(~r, t)|2 and the associated (average) probability current is
called ~j(~r, t). The average current for Dirac spinors is defined as ~j = ψ†~̂σψ. For an eigenstate |~k, α〉, show that
the average current is equal to the average velocity.

3) General conservation laws. For a potential barrier defined by V (x, y) = V (x), beyond the energy
conservation, exhibit two other conserved quantities.

2 Potential step (np junction)

Let us first consider a square (sharp) potential step of height V0 on which an electron of energy E = kF > 0
is incident (see the figure) Here V (r) = 0 if x < 0 (zone 1) and V (r) = V0 > 0 if x > 0 (zone 2). The electron
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is incident with an energy E > 0, which is below the step height V0, and its momentum k makes an angle φ
with the normal tanφ = ky/kx. The different wavectors are written as ~k(j) = (k

(j)
x , k

(j)
y ) = |~k(j)|(cos θj , sin θj),

where Ekin,j = αj |~k(j)| with j = {incident, reflected, transmitted}.
4a) Use the conservation of the wavevector projection along y to relate θr, θt to θi = φ, E and V0. Show that

we obtain the equivalent of the Snell-Descartes law n1 sin θ1 = n2 sin θ2 for an electron in graphene and show
that the “optical index” n is proportional to the kinetic energy E − V0 where θ1 = φ and θ2 = θt − π. Discuss
the case of negative optical index (Cheianov, Falko and Altshuler, Science 315, p 1252 (2007)).

4b) Show that total reflection is possible if E > V0/2 and compute the corresponding critical angle φc. For
angles φ larger than φc, an evanescent wave is present in the step.

5) From the continuity of the (spinorial) wavefunction at the interface x = 0, obtain the reflection and
transmission amplitude r and t. Infer the transmission probability T ≡ 1−|r|2 and compare it to |t|2. Comments ?

6) Use the current conservation equation jx = const to show that

cosφ− |r|2 cosφ = −|t|2 cos θt. (4)

7) Show finally that

T = − cosφ cos θt

sin2
(
φ+θt

2

) and R =
cos2

(
φ−θt

2

)
sin2

(
φ+θt

2

) (5)

where the transmitted angle is :

θt = θ2 + π = arcsin
( E

V0 − E
sinφ

)
+ π (6)

These equations are equivalent to the Fresnel formulae in optics.
8) Draw a polar plot of the transmission probability T (φ) for the potential step. What is the value of T (0) ?
9) The previous result is quite general. To show it, we consider a massless Dirac electron, which is incident

on an impurity whose potential is smooth on the lattice scale such that intervalley scattering is suppressed. The
problem can be described within a single valley model. The impurity potential is therefore V̂imp(~r) ≈ U(~r)1̂.
Using the first order Born approximation, the scattering probability is given by

P (θ) ∝ |〈~k′, α′|U(~r)1̂|~k, α〉|2 (7)

where |~k, α〉 and |~k′, α′〉 are the initial and the final states respectively and θ is the angle between the final and
initial wavevectors. Show that the scattering matrix element reads :

〈~k′, α′|U(~r)1̂|~k, α〉 = 1 + eiθ

2
Ũ(~k′ − ~k) (8)

where Ũ(~q) ≡
∫
d2rU(~r) exp(i~q · ~r) is the Fourier transform of the potential U(~r). Deduce that the scattering

probability reads :

P (θ) ∝ |Ũ(~q)|2 × cos2
θ

2
= |Ũ(~q)|2 × 1 + cos θ

2
(9)

Backscattering corresponds to θ = π which implies P (π) = 0. Provide an intuitive explanation of this absence
of backscattering

3 conclusion
You can find the detailed correction and discussion of the Klein tunneling in the pedagogical review paper by

P. E. Allais and J.-N. Fuchs, Eur. Phys. J. B 83, 301-317 (2011). Experiments with graphene has been realized
in N. Stander, B. Huard and D. Goldhaber-Gordon, Phys. Rev. Lett. 102, 026807 (2009) and A.F. Young and
P. Kim, Nat. Phys. 5, 222 (2009).
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TD No 2 : Berry and Zak phases

1 A two-level system
We consider a simple two-level system in a normalzied magnetic field magnetic field. The Hamiltonian simply

reads
Ĥ(~ξ) = ~ξ · ~̂σ = (sin θ cosϕσ̂x + sin θ sinϕσ̂y + cos θσ̂z), (1)

where σ̂x, σ̂y, σ̂z denote the Pauli matrices, ~ξ = (sin θ cosϕ, sin θ sinϕ, cos θ) with θ, ϕ are the two spherical
angles.

1) The two eigenenergies are E± = ±1. Calculate their corresponding eigenvectors |ψ±(θ, ϕ)〉.

2) For the two eigenvectors, express the Berry connection ~χ±(~ξ) = i〈ψ±|~∇~ξ|ψ±〉.

3) Deduce the Berry curvature Ω±(θ, ϕ)

4) Calculate the first Chern number C±1 . Check that C+
1 + C−1 = 0.

2 The Zak phase of the dimerized chain
We consider a dimerized chain, the so-called Su-Schrieffer-Heeger model of polymer chain (see figure (1)).

Figure 1 – A dimerized chain of atoms

This chain is described by a tight-binding Hamiltonian with two different hoping amplitudes t and t′ for two
adjacent sites. We have two different sorts of atoms a and b on which electrons can hop. We denote by m the
mth dimer of the chain. The Hamiltonian can be written as

Ĥ = −
M∑
m=1

[
tb̂†mâm + t′â†m+1b̂m + h.c.

]
(2)

where â†n and b̂†n define creation operators of the atom a and b on the nth dimer .
1) Before diagonalizing the Hamiltonian, we want to derive a few simple properties for this system. We first

consider our one-dimensional model with open boundary conditions. What happens at the boundaries of the
chain for the two limiting cases t = 1, t′ = 0 and t = 0, t′ = 1 ?

2) We now consider periodic boundary conditions. In order to diagonalize this Hamiltonian, we first introduce
the vectors

ψ̂k
†

=
(
ψ̂†Ak , ψ̂†Bk

)
=

1√
M

M∑
m=1

eia0mk(â†m , b̂†m),

Show that we can write H under the following form

Ĥ =
∑

k=2πn/a0

ψ̂†kĤ
B(k)ψ̂k. (3)
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with

ĤB(~k) = −t

(
0 ρ(~k)

ρ∗(~k) 0

)
,

with ρ(k) a function to be determined.

3) show that ĤB(k) can be written as

ĤB(~k) = −t~d(~k) · ~σ,

where ~σ =

(
σx
σy

)
, and ~d(~k) is a 2-dimensional vector to be determined.

4) Diagonalize the Hamiltonian and find the dispersion relation of the two bands.

5) We define the phase φ(~k) by ρ(~k) = |ρ(~k)|e−iΦ(~k). Calculate φ(~k). ρ(k) is thus a complez number defined
by its modulus and its phase. Using a polar representation, plot ρ(k) for t′ > t and t′ < t (this is equivalent to
plot the extremity of the vector ~d(~k). What can you already infer from this ? What happens at t′ = t ?

6) Show that the eigenvectors |uk,±〉 can be written in the following form

|uk,±〉 =
1√
2

(
e−iφ(k)

±1

)
.

7) Determine the Zak phase defined as

Zα =

∮
dk 〈uk,α|i∂kukα〉, (4)

where α = ±1.
Calculate the Zak phase in the two cases t′ > t and t′ < t. What are the differences between these two cases ?

Similarly to the Zak phase, one often defines the winding number which reads here ν = 1
2πi

π∫
−π

dk d
dk ln(ρ(k)) =

Z/π. In the present example ν = 0, 1. Could you establish a bulk/boundary correspondence between what
happens at the edges of the chain (for open boundary conditions) and the bulk topological invaraint ν ?

8) Can you find some 1D models where ν > 1 ?

9) Take parallel copies of the SSH chain and couple them without breaking chiral symmetry (it means here
they all start on the left side with white points for example). What will happen with the edge states ?
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Correction of the TD No 2 : Berry phases

1 A two-level system
The Hamiltonian simply reads

Ĥ(~ξ) = ~ξ · ~̂σ = (sin θ cosϕσx + sin θ sinϕσy + cos θσz), (1)

1) In matrix form,

H =

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
,

Let us focus on the ground state.
The ground state is associated with the eigenenergy E−1 = −1. The eigenvector can be written as :

|ψ−1(θ, ϕ)〉 =

(
sin θ

2e
−iϕ

− cos θ2

)
.

To show it, just use trigonometric formulas.
Similarly, you can check that the eigenvector associated with the exited state reads :

|ψ1(θ, ϕ)〉 =

(
cos θ2e

−iϕ

sin θ
2

)
.

2) Two options : The simplest ones is to assume that ϕ ∈ [0, 2π] and θ ∈ [0, π] and use cartesian coordinates
for these two variables.

The other option is to use spherical coordinates and write the gradient and curvature in spherical coordinates.
I will choose the first one which is simpler. But you can check that both give the same result.

The Berry connection for the ground state writes as :

χ
(−1)
θ = i 〈ψ−1|∂θψ−1〉 = 0 (2)

χ(−1)
ϕ = i 〈ψ−1|∂ϕψ−1〉 = sin2 θ

2
=

1− cos θ

2
(3)

Within our gauge choice, the connection is exactly zero at the north pole for the ground state. One can repeat
these calculations for the first (and only) exited state and just notice that the other eigenstate is obtained by
θ → θ + π/2.

3) One can therefore immediately obtain the Berry curvature :

Ω(−1) = ∂θχ
(−1)
ϕ − ∂ϕχ(−1)

θ =
sin θ

2
. (4)

Notice that the Berry curvature is gauge invariant while the Berry connection is not. The curvature cancels for
θ = 0 and θ = π. Notice that the Berry connection cancels at the north pole. This corresponds to a singularity.
We can move the position of this singularity BUT not remove it. The algebra is the same as for Dirac’s theory of
the magnetic monopole : the degeneracy at the origin is the monopole, and the singularity is the “Dirac string”

4) The domain of variation of the variables θ, ϕ is a rectangle. This is closed surface which has the same
topology as the torus. The first Chern number associated with the ground state is then obtained by integration
of the Berry curvature up to a factor 2π :

1

2π

∫
dθdϕ

1

2
sin θ = 1 = C

(−1)
1 .

The fact that C1 is an integer comes from the following general homotopy argument : The Hamiltonian defines
a map from a sphere S2 toward a sphere S2. The Chern number is therefore classified according to Π2(S2) = Z.
This implies that the ground state of this Hamiltonian is very robust toward continuous deformations.

The same type of work can be done for the excited state associated with the eigenvalue E+1 = 1. One can
explictly check that Cψ1

1 = −1, which implies that
∑

n=−1,1
C

(n)
1 = 0, as it should be.
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2 The Zak phase of a dimerized chain
We consider a dimerized chain as depicted in (see figure (1)).

Figure 1 – A dimerized chain of atoms

The Hamiltonian reads

Ĥ = −
M∑
m=1

[
tb̂†mâm + t′â†m+1b̂m + h.c.

]
. (5)

1) For t = 1 and t′ = 0, we obtained a set of decoupled dimers. However, in the other limit t′ = 1 and
t = 0, we notice that a0 and bM disappear from the Hamiltonian. They therefore correspond to decoupled zero
energy states localized at the boundaries of the chain. They will the role of edge states. This first consideration
suggests that these cases may correspond to two representative points in the phase diagram of two topological
distinct phases.

2) Introducing

ψ̂k
†

=
(
ψ̂†Ak ψ̂†Bk

)
=

1√
M

M∑
m=1

eia0mk(â†m b̂†m),

and

ĤB(~k) = −t

(
0 ρ(~k)

ρ∗(~k) 0

)
,

with ρ(k) = 1 + t′

t e
−ika0 , the Hamiltonian takes the following form :

Ĥ =
∑

k=2πn/a0

ψ̂†k,nĤ
B(k)ψ̂k,n. (6)

3) The Hamiltonian ĤB(~k) can be also written as

ĤB(~k) = −t~g(~k) · ~σ,

with ~g(~k) =
(

1 + t′

t cos ka0,
t′

t sin ka0

)
.

4) The diagonalization of the Hamiltonian is straightforward (as usual square the Hamiltonian) and we
obtain two bands with a dispersion relation

ε±(~k) = ±t|g(~k)| = ±
√
t2 + t′2 + 2tt′ cos ka0.

5) We define the phase φ(~k) by ρ(~k) = |ρ(~k)|e−iΦ(~k). The phase thus reads

φ(~k) = arctan

[
t sin ka0

t+ t′ cos(ka0)

]
.

One can use a polar representation to plot ρ(~k). This is also obvious to notice that the extremity of the
vector ~d(~k) actually describe a circle of radius t′/t ansd centered around the point (1, 0). Therefore when t′ < t
this circle never encircles the origin while for t′ > t it does. At the particular point t′ = t, the circle touches the
origin. This point also corresponds to the clsoing of the gap. We will see that we can interprete this point as a
topological transition.

6) One can explicitely check that the eigenfunctions |uk,±〉 defined in the text are indeed eigenvectors (the
calculations are straightforward).
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7) The Zak phase is defined as

Zα =

∮
dk 〈uk,α|i∂kukα〉 =

1

2

∮
dk
dφ

dk
=

∆φ

2
. (7)

When t′ < t, Z = 0, while for t′ > t, Z = π. The Zak phase is some kind of equivalent of the Chern number
but in one dimension. This is a topological invariant. Similarly to the Zak phase, one often defines the winding

number which reads here ν = 1
2πi

π∫
−π

dk d
dk ln(ρ(k)) = Z/π.

When Z = π (ν = 1), the phase is topologically non-trivial. This implies teh existence of edge states (bound
states) which do not disperse when the system has open boundary conditions. They correspond to almost
unpaired electrons as we have seen in 1). We can actually go beyond question 1) and find the spectrum for open
boundary condition whatever t, t′. We will find that for t′ > t, the bound states are exponentially localized with
a localization length ξ = a0/ ln(t′/t).

These two phases are separated by the point t′/t = 1 which correspondS to a topological transition where
the band gap closes.

At k = 0, ĤB(0) = −(t′ + t)σx,with eigenvalues ±(t′ + t). One can therefore label each band by a parity
index. At k = π, ĤB(π) = −(t− t′)σx, with eigenvalues ±(t− t′).

Our topological transition is therefore characterized by a band inversion.
To summarize, this very simple example has already all key features which we will meet later when we will

introduce the topological insulators.
8) It would be interesting to extend the previous model taking into account next to nearest neighbour t′′ and

look at the Zak phase (or equivalently here the winding number) in the plane (t′/t, t′′/t). Some higher winding
number ν = ±2 are possible.

9) We take similar chains and form a 2D lattice by weakly coupling them in the y direcion. Our localized
bound states can start dispersing along the y direction. We form this way a (weak) topological insulator with
dispersive edge state.

3



M2 ICFP 2016/2017
Graphene, Dirac fermions and topological matter

by Pascal Simon (pascal.simon@u-psud.fr)

TD No 3 : Topological properties of a 2-band model in two dimensions

1 A 2-band tight-binding model Hamiltonian
We consider a two-dimension (2D) model hamiltonian whose kernel reads

h(~k) = ∆(sin(kx)σx + sin(ky)σy)− (2t(cos(kx) + cos(ky)) +M)σz (1)

where the ~σ describe the Pauli matrices. If not specified, we consider periodic boundary conditions.

1) In real space (on a square lattice), could you tell what could this Hamiltonian correspond to ?

2) Compare the form of this Hamiltonian to a spin 1/2 in a magnetic field. Find the eigenvalues of this
Hamiltonian. Notice that h(~k) = ~g(~k) · σ.

3) Depending on t,M,∆, find the points in the Brillouin zone where the system becomes gapless.

4) Find the eigenfunctions of this hamiltonian.

5) When the system is gapped, we may introduce ~d(~k) = ~g(~k)

|~g(~k)|
whihc lives on the unit sphere. Discuss the

surface described by ~d(~k) when ~k runs over the first Brillouin zone. Hint : You should distinguish the cases
M < −4t, −4t < M < 0, 0 < M < 4t, M > 4t.

6) When it is possible, calculate the Berry connection, the Berry curvature and the Chern number for both
bands.

7) We now consider this model on a strip parallel to the x-axis (therefore we have periodic boundary condi-
tions in that direction) of finite size L in the y direction (say y ∈ [−L/2, L/2]. Perform numerically an exact
diagonalization of this model in the different cases mentioned previously. Conclusion ?

8) More advanced : assuming L >> a, where a is the lattice spacing, could you find an approximate expression
of the edge states (when they exist) which are localized near y = ±L/2. Hint : consider an half-place, say y<0,
where we define this hamiltonian.

1



M2 ICFP 2015/2016
Dirac matter and topology in many particle systems
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TD No 3 : Topological properties of a 2-band model in two dimensions

1 A 2-band tight-binding model Hamiltonian
We consider a two-dimension (2D) model hamiltonian whose kernel reads

h(~k) =
∑
kx,ky

∆(sin(kx)σx + sin(ky)σy)− (2t(cos(kx) + cos(ky)) +M)σz (1)

where the ~σ describe the Pauli matrices. If not specified, we consider periodic boundary conditions.
Assume t > 0, ∆ > 0 real.

1) We consider a square lattice with two sorts of fermion per unit cell, say a and b. The term 2t(cos(kx) +
cos(ky)) correspond to the standard dispersion relation of fermions (belonging to the same specie) with a nearest
neighbor hopping parameter t. M can be regarded as a chemical potential. However, notice that we have two
sorts of fermions here but with some inverted band index ; t− > −t ; M− > −M . Concerning the first term,
this corresponds to a complex nearest neighbour hopping term i∆ between fermion a and fermion b. Therfore
this term corresponds to some chirality. Note that the total flux per plaquette is zero. This model has some
clear analogy with the Haldane model and contains similar ingredients.

2) This Hamiltonian has the similar form as a spin 1/2 in a magnetic field. We have h(~k) = ~g(~k) · σ, with

~g(~k) = (∆ sin kx,∆ sin ky,−2t(cos(kx) + cos(ky))−M).

The spectrum is thus trivially obtained by ε(k) = ±|~g(~k)|.
We have therefore two bands labeled by the index ± and the gap between the two bands is G = 2min(|~g(~k)|).

As long as the gap G > 0 the bands never cross each other.

3) The spectrum becomes gapless if |~g(~k)| = 0. This implies

∆2[sin2 kx + sin2 ky] + [2t(cos(kx) + cos(ky)) +M ]2 = 0

We thus see that we have a few special points in the Brillouin zone, namely :
~k = (0, 0),~k = (π, π),~k = (0, π),~k = (π, 0).
At these four points,

~g(~k = (0, 0)) = (0, 0,−4t−M) , ~g(~k = (π, π)) = (0, 0, 4t+M) , ~g(~k = (0, π)) = ~g(~k = (π, 0)) = (0, 0,M).

Therefore, the spectrum can become gapless when M = −4t,M = 0,M = 4t. We should thus divide the
analysis of the Hamiltonian in the four intervals M < −4t, −4t < M < 0, 0 < M < 4t, M > 4t.

4) We already met in the main lecture different parametrization of the eigenvectors for a general 2-band
model. Let us focus first on the lowest band denoted as ε−. The eigenvector can be parametrized as

u
(1)
− (k) =

1

N (1)
−

(gz − g, gx + igy) , (2)

where g =
√
g2x + g2y + g2z . The factor N− is a normalization factor. Notice that this eigenvector is defined up

to a global phase (i.e. up to a gauge choice). For example, we can multiply the vector u(1)− (k) by an appropriate
phase in order to obtain for example

u
(2)
− (k) =

1

N (2)
−

(−gx + igy, gz + g, ) (3)
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Since the hamiltonian has the same form as a spin 1/2 in a magnetic field, there is another more convenient
representation for these eigenvectors namely the Bloch sphere. When g(k) 6= 0 we may thus introduce the
following parametrization :

cos(θ) =
gz
g

; eiφ =
gx + igy√
g2x + g2y

(4)

where θ ∈ [0, π[, φ ∈ [0, 2π[. Note that the phase φ is not well-defined at the poles as expected. The eigenvectors
read within this representation :

u−(k) = eiα(θ,φ)
(
e−iφ/2 sin(θ/2),−eiφ/2 cos(θ/2)

)
,

where α(θ, φ) is an arbitrary phase. Fixing this phase corresponds to fixing the gauge. Similarly, we get for
u+(k) :

u+(k) = eiβ(θ,φ)
(
e−iφ/2 cos(θ/2), eiφ/2 sin(θ/2)

)
.

The eigenvector u+(k) can be readily obtained from the eigenvector u−(k) by changing ~g → −~g i.e. θ → −θ.
To show the equivalence between both representation, just inject for example the spherical parametrization

in Eq. (4) into Eq. (2) or Eq. (3).

5) When the system is gapped, we introduce ~d(~k) = ~g(~k)

|~g(~k)|
which lives on the unit sphere. As suggested by

the text, let us consider separately the four intervals.

1. Case M < −4t. We see that cos(θ) > 0. This means that area swept by the vector ~d(k) belongs to the
northern hemisphere of the Bloch sphere. As we have seen in the main lecture, we can always choose a
gauge such that the north pole is well defined (chose for example α = −φ/2). In this case, the eigenvectors
are well-behaved over the whole Brillouin zone and we expect this phase to be topologically trivial.

2. Case −4t < M < 0. In this regime, cos(θ) changes signs. More specifically, at the Γ point, kx = ky = 0,
we reach the south pole (θ = 0) while at the other special points (0, π), (π, 0), (π, π), we reach the north
pole (θ = π). We can convince ourselves that we span the whole Bloch sphere including both north and
south pole. Therefore we cannot find a choice of gauge where our eigenvectors are well behaved for the
whole Brillouin zone. We expect this phase to be topological as it will be confirmed by the calculation
of the Chern number. If we want our wave vectors to be well behaved everywhere, we need to separate
the Brillouin zone into two parts. We draw a small circle around the origin. Inside this small circle, which
we will call region D(1), we use the wave vector u(1) and outside this circle, we use for example u(2).
This amounts to define two different choices of the gauge. The wavefunctions for these two regions are
connected by a gauge transformation which wikll leave to a non-trivial Berry curvature as we will see.

The special point M = −4t corresponds to a closure of the gap at (kx, ky) = (0, 0). This corresponds to
a single Dirac point where the system is a semi metal. This value corresponds to a topological transition
where the two bands are talking to each other (and somehow change their Chern number).

3. Case 0 < M < 4t. In this regime, we encounter the same problems as in the case −4t < M < 0. At
kx = ky = π, we reach the north pole while for the other three special points we reach the south pole. The
discussion is therefore exactly similar as in the previsou one and we expect this pahse to be topological too.

The special point M = 4t corresponds to a closure of the gap at (kx, ky) = (π, π).
4. Case M > 4t. This case is similar to the case M < −4t except that now cos(θ) > 0. In that case, the

vector ~d(k) belongs to the southern hemisphere of the Bloch sphere. Again we can find a gauge such that
the eigenvectors are all well behaved. This is this a trivail insulating phase.

6) Let us now concretize the previous reasoning by computing the Berry connection, the Berry curvature
and Chern numbers in the previous intervals. We will work only with the lower band and thus the eigenvector
u−(k). There are many ways to perform these calculations.

1. Case M < −4t. Here we can use a gauge such that the north pole is well defined (chose for example
α = −φ/2). The eigenvector reads :

u−(k) =
(
e−iφ sin(θ/2),− cos(θ/2)

)
,
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The singularity has been pushed to the south pole which is never reached. Therefore, we can use our
results for the spin 1/2 in a magnetic field. The Berry connection is defined on the Bloch sphere and
parametrized by the unit vectors ~eθ, ~eφ.

~A(−) = (Aθ(−), A
φ
(−)) = (0, (1− cos(θ))/2).

The Berry curvature is radial, therefore orthogonal to ~eθ and ~eφ and reads

~Ω(−) =
sin θ

2
~er.

The Chern number is defined by

C(−) =
1

2π

∮
∂BZ

~A(−) · ~dk =
1

2π

∫∫
BZ

Ω(−)d
2k

Since the Chern number is an integer, we can convince ourselves that this corresponds to the number of
time the sphere is wrapped. Here no singularity is meet and this integral is thus zero. This corresponds
to a trivial phase.

2. Case −4t < M < 0. In this regime, cos(θ) changes sign and the whole sphere is spanned. Therefore
we cannot escape the singularity. There are many strategies. We need two well defined wavefunctions to
describe the whole BZ. First, we draw a small circle around the origin of the BZ. Inside this small circle,
which we will call region D(1) , we use the following eigenfunction u(1)− (k) =

(
sin(θ/2),−eiφ cos(θ/2)

)
. and

outside (say area D(2)), we use u(2)− (k) =
(
e−iφ sin(θ/2),− cos(θ/2)

)
.

Clearly u(2)− (k) = e−iφ(k)u
(1)
− (k). Therefore the Berry connection

~A
(2)
(−) = ~A

(1)
(−) +∇kφ(k).

Therefore, we get∫∫
BZ

Ω(−)d
2k =

∫∫
D1

∇× ~A
(1)
(−) +

∫∫
D2

∇× ~A
(2)
(−) (5)

=

∮
∂D1

~A
(1)
(−)

~dk +

∮
∂D2

~A
(2)
(−)

~dk =

∮
∂D1

~A
(1)
(−)

~dk −
∮
∂D1

~A
(2)
(−)

~dk (6)

= −
∮
∂D1

∇kφ(k)~dk = φ(0)− φ(2π) = 2π. (7)

Indeed, in our case the phase φ is defined

eiφ(k) =
gx + igy
|gx + igy|

≈ kx + iky
|kx + iky|

= eiψ,

where we use the fact that D(1) is around the north pole and we introduce kx+ iky = eiψ. Therefore where
we run over D(1), the angular variable ψ, goes from 0 to 2π and so does φ(k).
Thus

C(−) = 1.

We can convince also ourselve that C(+) = −1.

3. Case 0 < M < 4t. In this regime, we encounter the same problems as in previous the case −4t < M < 0.
We can proceed similarly and find C(−) = −1.

4. Case M > 4t. No singularity is reached so C = 0.

Let me also use another straighforward approach which use the fact that the Hamiltonian h(~k) and h̃(~d) = ~d·~σ
have the same topological properties provided h(~k) is gapped. We already studied in the tutorial 2 the properties
of h̃(~d). The Berry connection is defined by

~A−(~d) = i〈u−|∇~d|u−〉

3



where ∇~d simply means the vector (∇dx ,∇dy ,∇dz ). This implies ~A−(~d) = i〈u−|~σ|u−〉. This quantity is basis
dependent. We may instead compute the Berry curvature and use Berry’s general expression which is gauge
independent. This is given in the main lecture where we wrote

~B(n) = −Im

∑
k 6=n

〈n|∇~ξ|k〉 × 〈k|∇~ξ|n〉
(En − Ek)2


where ~B(n) is the Berry curvature associated with level n and here ~ξ ≡ ~d. Since we only have two levels,
this is straighforward. If we chose our quantization axis (z axis) always parallel to ~d, the eigenvectors become
|u~d−〉 = (0, 1) and |u~d+〉 = (1, 0) like a spin 1/2. We immediately find

~B(n) = −
~d

2d3

which is an expression we already met. This corresponds to the field of a monopole at the center. Since d = 1
by construction, The Chern number is just C = 1

4π

∫∫
~d · ~dS. When ~d wraps the whole Bloch sphere, we will

find C = ±1.
7) We now consider this model on a strip parallel to the x-axis (therefore we have periodic boundary

conditions in that direction) of finite size L in the y direction (say y ∈ [−L/2, L/2]. Perform numerically an
exact diagonalization of this model in the different cases mentioned previously.

The goal of this numerical exercice is to show the presence of edge states in the topological phases which
crosses the gap.

8) More advanced : assuming L >> a, where a is the lattice spacing, could you find an approximate expression
of the edge states (when they exist) which are localized near y = ±L/2. Hint : consider an half-place, say y<0,
where we define this hamiltonian.

We will see in the next chapter how to find an approximate (low energy) form for the edge states.
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M2 ICFP 2016/2017
Graphene, Dirac fermions and topological matter

by Pascal Simon (pascal.simon@u-psud.fr)

TD No 4 : The Kitaev model and Majorana fermions

There is currently much excitement in parts of the condensed matter community because of a potential
observability of Majorana fermions in solid state systems. Majorana fermions are linear combinations of particle
and antiparticle states (in condensed matter : particles and holes) such that the Majorana particle is its own
antiparticle. In the second quantized language, the Majorana operators c are thus hermitian, c† = c (hence they
are often called “real” fermions). While such a fermion was over decades just a sometimes convenient theoretical
trick for representing fermions, the mere possibility of actually observing such a state is already intriguing. In
addition, however, there are by now proposals that build on Majorana fermions for the so-called topological
quantum computation, which is a further driving force for many physicists.

In this exercise set, you will start from a simple spin-chain model. By a Jordan-Wigner (JW) transformation
you will map it onto a fermionic system, which has Majorana edge states. Based on this insight, you are
encouraged to speculate about what conditions must be fulfilled for a true electron system to exhibit similar
physics.

1 Spin chain and sketch of the phase diagram
Consider a one-dimensional system of spins S = 1/2 described by the Hamiltonian

H =
∑
i

[
Jσxi σ

x
i+1 − hσzi

]
, (1)

where i runs over the lattice sites and σx,y,zi are the Pauli matrices for the spin operators (the true spins are
given by Sx,y,zi = ~

2σ
x,y,z
i , but for simplicity we use the Pauli matrices with eigenvalues ±1 here). Nearest

neighbor spins interact by an antiferromagnetic exchange coupling J > 0, and h is a uniform external field in
the z direction.

1) Determine the ground state spin configuration in the limits J � |h| and J � |h|, and then give an
argument at which ratio J/|h| the transition from one to the other phase occurs.

2) The Jordan Wigner transformation is the mapping of the spin chain onto a system of spinless fermions.
It is given by

σzi = 2a†iai − 1, σxi = (a†i + ai)
∏
j<i

σzj , σyi = −i(a†i − ai)
∏
j<i

σzj . (2)

Show that these fermion operators ai obey the anticommutation relations {ai, aj} = 0 and {ai, a†j} = δij .
3) Show then that the Hamiltonian can be written as

H =
∑
i

[
−J(a†iai+1 + a†i+1ai) + J(aiai+1 − a†ia

†
i+1)− 2ha†iai

]
, (3)

and give an interpretation of the different terms.

2 Spectrum for an infinite chain
4) Assume an infinite chain with lattice constant a. Show that the Hamiltonian can then be written in the

form
H =

∑
p

{
−2[h+ J cos(ap)]a†pap − J(eiapa†pa

†
−p + e−iapa−pap)

}
=
∑

(a†p, a−p)

(
−[h+ J cos(ap)] −Jeiap
−Je−iap +[h+ J cos(ap)]

)(
ap
a†−p

)
,

=
1

2

∑
p

(a†p, a−p)

(
−2[h+ J cos(ap)] −2iJ sin(ap)

2iJ sin(ap) +2[h+ J cos(ap)]

)(
ap
a†−p

)
.

(4)

1



The main interest of such representation is to treat on equal footing particle and hole excitations. Such a
Hamiltonian is particle-hole symmetric.

5) The diagonalization of such a Hamiltonian is known as a Bogoliubov transformation. For now, however,
we are only interested in the spectrum. Calculate it (eigenvalues of the 2× 2 matrix in Eq (4)) and show that
there is a gap given by ∆ = min{|J + h|, |J − h|} such that all eigenvalues εp fulfill εp > ∆ or εp < −∆.

3 Majorana fermions

Note that σxi and σyi depend on the hermitian combinations a†i+ai and−i(a
†
i−ai). These are the combinations

we can use to define Majorana fermions,

c1i = a†i + ai, c2i = −i(a†i − ai). (5)

6) Show that {cai , cbj} = δabδij and that the Hamiltonian becomes

H = −i
∑
i

[
Jc2i c

1
i+1 −

h

2
c2i c

1
i

]
+ const. (6)

7) For a chain of finite length, i = 1, . . . , N , with open boundary conditions, most of the eigenstates have
energies εn > ∆ or εn < −∆ (with ∆ given above), but there are in addition precisely 2 states of energies ε ≈ 0,
one located near i = 1 and one near i = N .

Consider the special case h = 0 and show that it is indeed the case. Can you relate this feature to the SSH
model we treated in TD 2. What can you infer by analogy ?

8) For simplicity, we consider here a semi-infinite system (N → ∞), where only one bound state remains
that has exactly ε = 0. Show then that the bound state is of the form |b1〉 = A(c11+λc12+λ2c13+ . . . )|〉. Show that
it is a Majorana fermion, determine λ, and give the conditions necessary for the existence of the normalization
constant A (i.e., such that the bound state can exist).

9)For finite length N , estimate then the energy splitting between the bound states on both ends (remember
the splitting between bonding and antibonding states in the H2 molecule). In the limit λ → 0, to which state
does the bound state at i = 1 correspond ?

4 Majorana fermions with electrons
10) Reconsider now Eq. (4) and assume that the ap describe real electrons. Speculate what type of interaction,

band structure, etc. is necessary to obtain such a Hamiltonian.
Hint : Expressions of the form apa−p appear whenever superconductivity is involved, and they represent 2

electrons that are bound together in a Cooper pair. For conventional superconductors, the Cooper pairs are in
a spin-singlet state and so the operators are complemented by spin indices σ =↑, ↓ as ap↑a−p↓. What does this
imply for the a†pσapσ terms of the kinetic energy ?
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Dirac matter and topology in many particle systems

by Pascal Simon (pascal.simon@u-psud.fr)

Correction TD4 : the Kitaev model and Majorana fermions

1 Spin chain and sketch of the phase diagram
1) The Hamiltonian of the spin chain is defined by

H =
∑
i

[
Jσx

i σ
x
i+1 − hσz

i

]
, (1)

If J � |h|, we have a ferromagnet with all spins aligned in the z direction. Therefore the system has a gap. While
for J � |h|, we expect an antiferromagnet (AF) which is gapless. We thus expect a quantum phase transition
when J ∼ h with a closure of the gap spectrum from the ferromagnet to the AF. This is exactly what happens.

2) The Jordan-Wigner transformation is defined by :

σz
i = 2a†iai − 1, σx

i = (a†i + ai)
∏
j<i

σz
j , σy

i = −i(a†i − ai)
∏
j<i

σz
j . (2)

One can inverse these relations and show

ai = (
∏
j<i

σz
i )σ+

i a†i = (
∏
j<i

σz
i )σ−i , (3)

where σ±i = (σx
i ± iσ

y
i )/2.

By help of these fermion operators ai and a†i , we can check that they indeed obey the anticommutation
relations {ai, aj} = 0 and {ai, a†j} = δij using standard algebra of the Pauli matrices.

3) Using the following identities :

a†iai =
1

2
(σz

i + 1), (4)

(a†i − ai)(a
†
i+1 + ai+1) = iσy

i σ
x
i+1σ

z
i = −σx

i σ
x
i+1, (5)

(a†i + ai)(a
†
i+1 − ai+1) = iσx

i σ
y
i+1σ

z
i = σy

i σ
y
i+1. (6)

we immediatly find that the Hamiltonian can be written as

H =
∑
i

[
−J(a†iai+1 + a†i+1ai)− J(aiai+1 − a†ia

†
i+1)− 2ha†iai

]
. (7)

The first line corresponds to a standard hopping term, the second line to some pairing term between nearest
neighbours while the last term corresponds to a chemical potential.

2 Spectrum for an infinite chain
4) We consider an infinite chain with lattice constant a. Using translation invariance, we can go in Fourier

space and write the hamiltonian as

H =
∑
p

{
−2[h+ J cos(ap)]a†pap + J(eiapa†pa

†
−p + e−iapa−pap)

}
=

1

2

∑
p

(a†p, a−p)

(
−2[h+ J cos(ap)] 2iJ sin(ap)
−2iJ sin(ap) +2[h+ J cos(ap)]

)(
ap
a†−p

)
.

(8)
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Note that the kernel of this Hamiltonian reads H(k) = σ2h2(k) + σ3h3(k) with h3(k) = h + J cos(ap),
h2(k) = −J sin(ap). We already met a similar problem when dealing with the dimerized chain or SSH chain.
When the system is gapped, we can define the vector ĥ = (h2, h3)/|h| which defines a map between the torus
T 1 (a circle) to another circle. The Jacobian of such mapping defines a topological invariant which is an integer
(see TD 2).

5) The diagonalization of such Hamiltonian is straightforward and we obtain the spectrum :

E± = ±
√

[h+ J cos(ap)]2 + J2 sin2(ap). (9)

The spectrum is generically gapped and the gap is ∆ = min(|h + J |, |h − J |). Therefore the system becomes
gapless for h = ±J .

3 Majorana fermions
6) We define Majorana fermions as

c1i = a†i + ai, c2i = −i(a†i − ai). (10)

Using the fermionic anticommutation relations, it is immediate to show that {cai , cbj} = δabδij .
Using the definition of the Majorana fermion operators, we can rewrite the Hamiltonian as

H = −i
∑
i

[
Jc2i c

1
i+1 −

h

2
c2i c

1
i

]
+ const. (11)

7) We consider now a finite size chain with N sites labeled by, i = 1, . . . , N . Note first that for h = 0, the
two Majorana fermion operators c11 and cN2 decouple from the Hamiltonian and thus correspond to zero energy
states localized at the two extremities of the chain.

Most of the eigenstates have energies εn > ∆ or εn < −∆ where ∆ = |J | is the gap. They correspond to
quasi-particles which are high energy excitations (not in the gap). We are interested in low energy excitations
within the gap near ε ≈ 0.

For simplicity, we consider here a semi-infinite system (N →∞), where only one bound state remains that
has exactly ε = 0.

We use the fact that the matrix can be written in the following form :
|b1〉 = A(c11 + λc12 + λ2c13 + . . . )|〉.
to be done

4 Majorana fermions with electrons
8) Reconsider now Eq. (8) and assume that the ap describe real electrons. Speculate what type of interaction,

band structure, etc. is necessary to obtain such a Hamiltonian.
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