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1 Introduction
1.1 Density of states

We calculate in the introductory chapter the density of states ρ(ε) for a quadratic dispersion relation.
Perform the same analysis with a linear dispersion relation instead of a quadratic one in dimension d = 2 and

d = 3.

2 Green functions
2.1 Some properties

1. Show that the retarded Green function GR is a function of t− t′.

2. Show that

GMab(iωn) =
∫ β/2

−β/2
dτGMab(τ)eiωnτ .

2.2 Single-level
1. Let us consider the single-particel Hamiltonian

Ĥ = εĉ†ĉ,

Compute the following Green functions

GM (τ), GM (iωn) et GR(ω),

2. Plot GM (τ). What are the values of GM (0+) and GM (β−) ?
3. Compute the density of states associated to this level.

2.3 Density of states
Show using the Lehman representation that the density of states is normalized, namely that

∫
dωρ(ω) = 1.
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3 Feynman Diagrams
3.1 Simple diagrammatic approach

Consider the Hamiltonian

Ĥ =
∑
k

εk ĉ
†
k ĉk + εdd̂

†d̂+ t√
V

∑
k

(
ĉ†kd̂+ h.c.

)
.

Calculate using a diagrammatic approach the Green function

Gd(τ − τ ′) = −〈Tτ d̂(τ)d̂†(τ ′)〉 = −〈Tτ d̃(τ)d̃(τ ′)e−
∫ β

0
duṼ (u)〉

〈Tτe
−
∫ β

0
duṼ (u)〉

.

3.2 Fermions in interaction : the bubble diagram
We consider a homogeneous gas of spin 1/2 fermions interacting through a short-range two-body potential

V (~r − ~r′) = gδ(~r′ − ~r) with the coupling strength g 1.
The Hamiltonian describing the system reads

Ĥ =
∑

k,σ=↑,↓
εk ĉ
†
k,σ ĉk,σ + g

V
∑
q,k1,k2

ĉ†k1+q,↑ĉ
†
k2−q,↓ĉk2,↓ĉk1,↑, (1)

where V is the volume of the system and εk = ~2k2/2m is the single-particle spectrum for free fermions. We are
interested in the calculation of the fermionic self-energy at second order in g to study the quasi-particles life-time.
The first order corresponds to the Hartree and Fock diagrams. The Fock diagram gives a zero contribution because of
Pauli’s principle combined with a point interaction. The Hartree term gives Σ(1)

σ (k, iωn) = gn/2 where n = k3
F /(3π2)

is the total fermion density. Therefore, n/2 is the fermion density for a single fermion species.
The purpose of this exercise is to calculate the contribution of the bubble diagram to the self-energy by focusing

on its imaginary part.
1. Show that the corresponding contribution writes as

Σ(2)
σ (k, iωn) = − g2

β2V2

∑
k1,k2

∑
ω1,ω2

1
iω1 − ξk1

1
iω2 − ξk2

1
iω3 − ξk3

, (2)

with conservation rules ω3 = ωn + ω2 − ω1 et k3 = k + k2 − k1. We have introduced the notation ξk = εk − µ.

2. Perform the summation over frequencies ω2 and then over ω1 (or vice-versa), to obtain

Σ(2)
σ (k, iωn) = − g

2

V2

∑
k1,k2

(nF (ξ2)− nF (ξ3))(nF (ξ1) + nB(ξ2 − ξ3))
iωn + ξ2 − ξ1 − ξ3

, (3)

where nF (ε) and nB(ε)are the Fermi and Bose distributions respectively.

3. Now take the analytic continuation iωn → ω + i0+ and the imaginary part of the self-energy. After a bit of
algebra on the distribution functions, show that

=Σ(2)
σ (k, ω) = −π g

2

V2

∑
k1,k2

n̄F (ξ1)nF (ξ2)n̄F (ξ3)δ(ω + ξ2 − ξ1 − ξ3)
(
1 + e−βω

)
. (4)

where n̄F (ε) = 1− nF (ε)

4. Is it possible to recover this result using the Fermi golden rule ?

5. Instead of computing directly =Σ(2), we prefer to calculate its mean value by summing over the ~k wave-vector.
We assume that this averaging procedure does not modify the ω dependency of the self-energy. At zero temperature,
show that

〈=Σ(2)
σ (ω)〉 = −πg2N3

0
ω2

2 , (5)

where N0 denotes the density of states at the Fermi energy.

1. The coupling strength can be written in terms of the 2-body scattering length g = 4π~2a/m.
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3.3 Landau damping
In this problem, we are interested in the effect of the coupling to an electronic band of a bosonic excitation (for

example a spin wave), described by a bosonic field scalar φ whose Fourier decomposition reads

φ̂(x) =
∑
q

âqe
iqx + â†qe

−iqx, φ(q) = â−q + â†q (6)

with â†q and âq are the canonical bosonic creation/annihilation operators verifying [âq, â†q′ ] = δqq′ . We model the
coupling to the metal at low energy by the Hamiltonian

Ĥ =
∑
q

ωqâ
†
qâq +

∑
k

εk ĉ
†
k ĉk + g

∑
k,q

(â−q + â†q)ĉ
†
k ĉk+q

where ωq is the dispersion relation dof the bosonic mode (we assume ω−q = ωq), εk = k2/2m is the dispersion of
the electrons ĉ†k, ĉk. In the whole problem, we place ourselves in dimension d = 3.

We define the Green function of the field φ in imaginary time by

D(q, τ) = −〈T φ̂(q, τ)φ̂†(q, 0)〉

where T denotes the time-ordering in imaginary time and φ(q, τ) is written in the Heisenberg represenation.
1. Show that D is a β-periodic function of τ .

2. Find an explicit expression of the Green function D0(i nun) in the free case (g = 0) where the νn are the
Matsubara frequencies that we will specify.

3. Give the Feynman’s rules for the expansion in g, and draw the diagrams for D and G (fermionic Green
functions) to second order in g.

4. By analogy with the fermionic case seen in the lecture, show that we can define a self-energy Π(q, ω) for D
(also called polarization). Write the corresponding Dyson equation.

5. With a diagrammatic calculation at the lowest order, show that :

Π(q, iνn) = a

∫
d3k

(2π)3
nF (εk)− nF (εk+q)
iνn + εk − εk+q

where a is a coeficient to be determined

6. Find the zero-temperature expansion of the imaginary part of the retarded polarization =πR(q, ν) for q, ν → 0
in the near-equilibrium regime |ν| � vF q (where vF is the Fermi velicity). We remind that : πR(q, ν) = π(q, iνn →
ν + i0+).

In the case of a ferromagnetic spin wave, we have ωq = cq2 where c is a constant. Using the expression of D, show
that the electron coupling induces a damping of these spin waves. Why does this damping vanish at low frequency ?
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4 Introduction to quantum impurity models
4.1 Logarithmic divergences in the Kondo problem

We consider the Kondo Hamiltonian defined by :

HK = Jĉ†(x = 0)~S · σ̂ĉ(x = 0), (7)

which describes a local magnetic interaction between an impurity ~S and the conduction electron. In what follows,
we consider a S = 1/2 spin impurity.

Since there is no Wick theormen for spin operators, an alternative strategy is to use an appropriate representation
for the spin operators. It is quite natural to write a spin 1/2 in terms of fermionic operators ~S = d†α~σαβdβ with the
constraint

∑
α d
†
αdα = 1. This representation is due to Abrikosov. Although implementing a constraint is doable

(using Lagrange multiplier for example), this is not always very convenient.
Another representation which is appropriate here is the Majorana fermion representation. Consider a fermio-

nic operator c and write it c = (γa + iγb)/
√

2 and c† = (γa − iγb)/
√

2. Equivalently γa = (c + c†)/
√

2 and
γb = (c− c†)/i

√
2. The operators γa,b are fermionic operators and are self-adjoint : γa,b = (γa,b)†. They are called

Majorana operators.

1. Show that {ηa, ηb} = δab where ηa, ηb are Majorana operators. Infer that (ηa)2 = 1/2.

2. We introduce three Majorana operators ηx, ηy, ηz. We define a spin operator as Sa = − i
2ε
abcηbηc where εabc

is the totally antisymmetric tensor. Einstein convention is used here. Show that such operator satisfied some SU(2)
algebra that is

[Sa, Sb] = iεabcSc

and
∑
a(Sa)2 = 3/4. This implies Sx = −iηyηz, Sy = −iηzηx and Sz = −iηxηy. Contrary to Abrikosov fermions,

there is no constraint to implement here !

3. Because a Majorana fermion squares to a constant, a non-interacting (quadratic) Hamiltonian of Majorana
fermions is thus trivial and we can assume HMaj = 0. Therefore the Matsubara Green function for Majorana
fermions reduces simply to

Gη(τ) = −〈Tτη(τ)η(0)〉 = −1/2

Show that Gη(iωn) = 1/(iωn).

4. Our Kondo Hamiltonian thus reads :

HK = − i2Jε
abcηbηcσauv ĉ

†
u(x = 0)ĉv(x = 0),

where again Einstein convention is assumed here to alledge notations.
The Green function of a Majorana fermion is just a non-oriented straight line because creation and annihilation

are similar. The Kondo Hamiltonian is thus an interaction involving four bodies : two normal fermions and two
Majorana fermions. This is almost like a problem we dealt with in chapter III. The vertex can thus be represented
as in Fig. 1. The Feynmann rules are thus almost similar. In what follows, we assume particle-hole symmetry. This
means ρ(ω) = ρ(−ω) where ρ denotes the density of states of the conduction electrons. We want to compute how
the vertex is modifed in perturbation theory. The bare vertex is already linear in J . Therefore, at second order in
J , which means first order in perturbation theory, we can draw two non-trivial diagrams as depicted in Fig. 2.

Write the contribution of the two diagrams in terms of Gc(τ) and Gη(τ) the Matsubara Green function for the
conduction electrons and Majorana fermions respectively.

5. Show that when we add the two diagrams, they combine nicely to give the initial Kondo Hamiltonian provided

we define an effective Kondo coupling Jeff = J + 2J2
β∫
0
dτ [Gc(τ)Gη(τ)].

6. Evaluate the above integral if we choose ρ(ε) = ρ0 for |ε| ≤ D and ρ(ε) = 0 |ε| > D. You only need to evaluate
the leading divergence. Conclusion ?
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Figure 1 – Representation of the vertex. The extra factor 2 comes from the invariance under exchange of b and c
in HK .
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Figure 2 – The two diagrams at order J2. Notice that they are different because of the w propagator which goes
from 0 to τ in the 1st one and from τ to 0 in the 2nd one.

4.2 Impurity susceptibility
We are interested in an isolated magnetic impurity immersed in a metal, modeled by the Kondo Hamiltonian

ĤJ =
∑
α=↑,↓

∑
~k

ε~k ĉ
†
~k,α
ĉ~k,α + J ~̂S ·

∑
α,α′=↑,↓

ĉ†α(0)~σαα′ ĉα′(0)− hM̂z, (8)

where
M̂z = Ŝz +

∑
α,α′=↑,↓

∫
dxĉ†α(x)σ

z
αα′

2 ĉα′(x). (9)

The impurity is represented by a spin ~̂S, a spin 1/2 localized in x = 0, which interacts with a conduction band (the
c electrons) via some local antiferromagnetic coupling J > 0. We assume the system is in a magnetic field h along
the z direction. ĉ†α(0) ≡ ĉ†α(x = 0) denotes the creation operator for a conductaion electron in x = 0 and ~σ are the
Pauli matrices.

We are interested in the susceptibility of the impurity defined by

χimp ≡
d 〈M̂z〉
dh

∣∣∣∣∣
h=0

− χ0,Pauli (10)

where χ0,Pauli is the Pauli susceptibility of the conduction electrons c for J = 0. The purpose of this problem is to
show that the pertrubative expansion in powers of J of the "Curie constant" Tχimp(T ) has a logarithmic divergence
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in the T → 0 limit, or more explicitly (a is a constant that will not be determined) that

χimp = 1
4T

(
1− 2Jρ0 + (2Jρ0)2 ln T

D
+ a(Jρ0)2

)
+O(J3) (11)

1. Show the result of (11) to 0th order in J (i.e. a isolated spin). Why is this result correct at high temperature
whatever J ?

2. For a general Hamiltonian Ĥ = Ĥ0 + gĤint,with a coupling g show that the free energy satisfies :

∂F

∂g
= 〈Ĥint〉g , (12)

where the notation 〈· · ·〉g means the thermodynamical average with respect to the full Hamiltonian with interaction
g. Infer that

χimp = 1
4T −

∫ J

0
dJ̃

∂2

∂h2 〈 ~̂S · ĉ
†(0)~σĉ(0)〉J̃

∣∣∣
h=0

. (13)

3. We therefore need to calculate the average 〈Â〉J of Â ≡ ~̂S · ĉ†(0)~σĉ(0) with respect to the Kondo Hamiltonian.
We will do that in perturbation theory.

Compute χimp to order 1.

4. Show that Â = Ŝz ĉ†(0)σz ĉ(0) + (Ŝ+ĉ†↓(0)ĉ↑(0) + Ŝ−ĉ†↑(0)ĉ↓(0))

5. Calculate explicitly the correlation function 〈Tτ Ŝa(τ)Ŝb(0)〉0 where a, b = z,+,− in presence of a magnetic
field h.

6. Compute the correlators involving ĉ, ĉ† using the Wick theorem.

7. Can you infer χimp to second order 2 if you keep only the divergent term ?
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