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Spécialité: Physique des Solides

présentée par

Francesca CHIODI

Dynamical effects in
Superconductor/Normal metal/

Superconductor long Josephson Junctions

Soutenue le 5 juillet 2010 devant la commission d’examen:

Hélène Bouchiat Co-directrice de thèse
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Résumé

Introduction

L’évolution de l’électronique, dans ses efforts de miniaturisation, a permis la
fabrication de dispositifs dont les échelles caractéristiques sont au dessous du
micromètre. Cette réduction progressive des dimensions, unie à la possibilité
de refroidir les échantillons jusqu’à des températures de l’ordre du mK, a
permis de sonder des régimes de la matière dans lesquels la mécanique clas-
sique n’est plus valable, et il faut avoir recours à la mécanique quantique.
Le caractère ondulatoire des électrons se manifeste alors, donnant lieu à des
phénomènes d’interférence et de diffraction qui modifient fortement le trans-
port électronique. La phase des électrons joue alors un rôle fondamental.
On définit Lϕ comme la longueur sur laquelle un électron conserve sa phase.
Dès que la taille de l’échantillon L est inférieure à Lϕ, les électrons gardent
mémoire de leur phase, et l’échantillon est dit cohérent.
Lϕ dépend fortement de la température, et en dessous de 1 K elle peut
dépasser 1µm. Il est ainsi possible d’observer des phénomènes d’origine
quantique, associés normalement à des systèmes de taille atomique, dans
des échantillons qu’on peut aisément observer au microscope optique. Ces
phénomènes font l’objet de la Physique Mésoscopique.
Dans les supraconducteurs, on observe une cohérence de phase qui, à la
différence de la cohérence dont nous avons parlé jusqu’à maintenant, con-
cerne des états à deux électrons, les paires de Cooper. Ces paires sont
condensées dans un état quantique cohérent macroscopique, défini par le
paramètre d’ordre ∆ ei θ. Le condensat est caractérisé par une résistance
nulle.
Á l’interface entre un supraconducteur et un non-supraconducteur, les paires
de Cooper pénètrent dans le matériau non-supracondcuteur sur la longueur
de corrélation de paires ξ (dans le Niobium, par exemple, ξ ∼ 40nm).
Une jonction formée par deux électrodes supraconducttrices (S) séparées par
une couche isolante (I) d’épaisseur inférieure à ξ, est appelée jonction Joseph-
son, ou jonction SIS. Comme les corrélations supraconductrices s’étendent
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d’un contact à l’autre, un courant non-dissipatif peut circuler dans la jonc-
tion. En présence d’une différence de phase entre les contacts supraconduc-
teurs, les paires de Cooper traversent par effet tunnel la couche isolante, et
portent le supercourant: c’est l’effet Josephson dc.
Une relation très simple relie le supercourant IJ à la différence de phase δ:
IJ = Ic sin δ, où Ic et le supercourant maximum que la jonction peut porter.
Dès que la jonction est dans l’état résistif, tant que eV < ∆, la différence de
phase δ varie avec le temps: l’effet Josephson ac prédit en fait que V = ~

2 e
δ̇.

Quand on met en contact un métal normal (N) avec un supraconducteur
(S), la cohérence de phase électronique dans N interagit avec la cohérence
des paires de Cooper dans S.
Les corrélations supraconductrices peuvent alors pénétrer dans le métal nor-
mal, sur des longueurs supérieures à ξ, sous la forme de paires d’Andreev,
paires cohérentes électron-trou.
Le transport est assuré par les paires d’Andreev, qui se propagent tant que
la cohérence dans le métal normal est préservée, c’est à dire sur une longueur
L . Lϕ, LT . LT est la longueur thermique, au delà de laquelle l’agitation
thermique tue la cohérence.
Quand un fil métallique cohérent (L << Lϕ, LT ) est connecté par deux
supraconducteurs, un courant non-dissipatif traverse la jonction en présence
d’une différence δ entre les phases des deux électrodes supraconducteurs. Une
relation semblable, mais plus compliquée que celle décrite par l’effet Joseph-
son dc, est valable aussi dans ces jonctions. En fait, de la simple relation
sinusöıdale des jonctions tunnel, on passe dans les jonctions SNS à la relation
anharmonique IJ =

∑
n Ic,n sin(n δ).

Grâce à l’effet de proximité des contacts, le conducteur normal acquiert
donc des propriétés supraconductrices. Hormis le supercourant, un mini-
gap, réminiscence du gap supraconducteur, s’ouvre dans sa densité des états.
La particularité de ce minigap, beaucoup plus petit que le gap dès que L > ξ,
est qu’il est fortement dépendant de la phase: à δ = 0, son amplitude est
maximale, tandis que à δ = π il se ferme complètement.
Comme nous nous intéressons aux modifications des propriétés du métal nor-
mal dues à la supraconductivité de proximité, nous étudions des jonctions
longues diffusives, où le fil normal est plus long que ξ. Dans ce régime, les
contacts supraconducteurs n’imposent que les conditions aux limites, agis-
sant comme des réservoirs de phase. La densité des états du métal normal
devient un quasi-continuum d’états liés, appelés états d’Andreev, formant un
minigap.
La physique d’une telle jonction SNS est régie par la diffusion des paires
d’Andreev dans N. Par exemple, l’amplitude du minigap ∆̃ ne dépend que
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de la longueur du fil normal L et de la constante de diffusion D dans N:
∆̃ = 3.1ETh, où ETh = ~D/L2 est appelée énergie de Thouless.
Les propriétés dc de l’effet de proximité mésoscopique dans une jonction
longue métallique sont pratiquement universelles, dans le sens qu’elles
dépendent peu du métal lui-même, mais plutôt de sa géométrie et du régime
de transport, diffusif ou balistique.
Ces propriétés sont théoriquement bien comprises: on peut calculer, par ex-
emple, la densité des états du métal normal, la dépendance en température
du supercourant, l’influence de la transparence des interfaces NS...
Par contre, la dynamique des jonctions SNS longues est encore loin d’être
complètement comprise, même si elle suscite l’intérêt des physiciens depuis
les années 60. En fait, par rapport aux jonctions Josephson tunnel, où la
seule dynamique présente est celle de la phase, il faut prendre maintenant
en compte l’interaction entre la dynamique de la phase supraconductrice et
celle des quasiparticules hors équilibre dans le métal normal.

Le but de cette thèse est d’étudier la dynamique des jonctions longues
diffusives SNS.
En particulier, nous nous proposons d’identifier les temps caractéristiques de
réponse du courant. Nous avons distingué plusieurs temps qui jouent un rôle
fondamental dans la dynamique des jonctions longues SNS:

• Temps de diffusion τD = D
L2 : il s’agit du temps nécessaire à une paire

d’Andreev pour diffuser à travers la partie normale de longueur L.

• Temps électron-phonon τe−ph: il s’agit du temps inélastique d’interaction

électron-phonon. À haute température, c’est le processus inélastique
qui contrôle la relaxation de l’énergie du gaz d’électrons. La température
électronique tend donc vers la température du bain de phonons avec
un temps caractéristique τe−ph.

• Temps électron-électron τe−e: il s’agit du temps inélastique d’interaction
électron-électron. C’est le temps nécessaire au gaz d’électrons, après
une excitation, pour reformer une distribution d’équilibre de Fermi-
Dirac.

Le courant Josephson à l’équilibre est la somme des courants in portés par
chaque niveau d’Andreev d’énergie εn, ponderés par l’occupation du niveau,
pn. On a donc:

IJ(δ) =
∑
n

in(δ) pn(εn(δ)) (1)
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Si l’on augmente progressivement la fréquence de l’excitation, on s’attend
à observer des effets hors-équilibre dès qu’on dépasse les fréquences car-
actéristiques de la jonction.
En particulier, nous nous attendons à détecter deux temps: le temps de
réponse des fonctions de distribution pn, qui interviennent directement dans
l’expression du courant, et le temps de diffusion des paires d’Andreev. En
fait, dès que les paires d’Andreev n’ont plus le temps de traverser la partie
normale pendant le temps de mesure, les états liés d’Andreev ne sont plus
définis et la densité des états devient hors-équilibre; dans ce cas, le courant
porté par chaque niveau n’est plus défini, et le courant IJ est affecté.

Pendant ma thèse, après avoir caractérisé le comportement dc des jonc-
tions SNS,

• nous avons observé les effets d’une modulation haute fréquence du
courant sur la caractéristique dc tension-courant. En particulier, le
courant critique augmente dès que la fréquence de l’excitation est supérieure
au taux de diffusion dans la partie normale, tandis que le courant de
retrapping est fortement affecté dès que la fréquence de l’excitation
dépasse le taux électron-phonon.

• nous avons observé les effets d’une irradiation haute fréquence, com-
parable à une modulation de tension, sur la caractéristique dc tension
courant pour I > Ic, quand la jonction est ohmique et la phase varie
avec le temps. Nous avons mesuré des paliers de Shapiro entiers et frac-
tionnaires, jusqu’à des énergies supérieures au minigap. La dépendance
en champ magnétique des paliers fractionnaires a montré qu’ils sont
générés par des effets hors équilibre.

• nous avons observé dans un anneau SNS la réponse haute fréquence
du courant à une modulation haute fréquence de la différence de phase
δ. Pour des fréquences supérieures au taux de relaxation inélastique,
la réponse présente des composantes en-phase (χ′) et hors-phase (χ′′)
qui dépendent de la phase dc et de la fréquence. χ′ et χ′′ suivent en
fréquence une relaxation de Debye caractérisée par un temps du même
ordre de grandeur que le temps de diffusion.

Propriétés dc d’une jonction SNS longue

Nous avons commencé par étudier les caractéristiques dc tension-courant de
nos jonctions longues SNS, en l’absence de toute excitation.
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Nous avons étudié de simples jonctions SNS et des SQUIDs dc, anneaux
formés par deux jonctions SNS en parallèle. L’avantage des SQUIDs consiste
à pouvoir contrôler la différence de phase δ aux bords des deux jonctions SNS
en imposant un flux magnétique dans l’anneau. L’avantage des jonctions, par
contre, est leur simplicité: dans un SQUID, le fait que les deux jonctions ne
sont jamais exactement identiques complique l’interprétation des résultats.
Nous avons fabriqué les contacts supraconducteurs de nos jonctions avec
trois métaux différents: Aluminium (Al), Niobium (Nb) et Tungstène (W).
La partie normale de toutes nos jonctions est de l’Or (Au) de grande pureté
(99.9999%) avec un contenu d’impuretés magnétique inférieur à 0.1 ppm.
Les jonctions en Al-Au ont été faites par évaporation thermique sous angles;
les jonctions en Nb-Au par la gravure, en différentes étapes, d’une bicouche
Nb-Au; les jonctions en W-Au par une étape de lithographie et évaporation
du fil d’or, suivie par le dépôt de contacts de W en décomposant avec un
faisceau d’ions de Gallium focalisés un gaz organométallique de Tungstène.
Cette variété de méthodes de fabrication mène à des interfaces NS très
différentes. Malgré cela, les dépendances en température et champs magnétique
des caractéristiques dc tension-courant ont pu être interprétées par le même
modèle.

Characteristiques dc tension-courant

Nous polarisons nos jonctions en courant, et nous mesurons la tension V aux
bornes de l’échantillon.
À basse température, la jonction est supraconductrice par effet de proximité
en dessous du courant Ic, appelé courant critique; la tension est donc nulle.
À I = Ic, la jonction transite brusquement vers un état résistif, dans lequel sa
caractéristique est ohmique. Si on diminue le courant de polarisation à par-
tir de l’état résistif (N), la jonction retourne dans l’état supraconducteur (S)
seulement au dessous du courant de repiègeage Ir < Ic. Nous observons une
hystérésis d’amplitude Ir/Ic ∼ 0.15 − 0.4. Un exemple de la caractéristique
V(I) à basse température est montré en figure 1 (a).
À haute température, l’hystérésis disparâıt, et les transitions entre les états S
et N s’adoucissent. Un exemple de la caractéristique V(I) à haute température
est montré en figure 1 (b).

Nous avons examiné plusieurs causes possibles de l’hystérésis à basse
température.
D’abord, nous avons supposé une origine thermique. La jonction serait
alors intrinsèquement non-hystérétique, mais la valeur du courant critique
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dépendrait de l’état de la jonction.
Quand la jonction est supraconductrice, sa résistance est nulle, et la puissance
dissipée par effet Joule est nulle aussi. Le courant de transition entre l’état S
et l’état N est donc Ic(Te) = Ic(Tph), où Te est la température électronique,
qui cöıncide avec la température du bain des phonons Tph.
Dès que la jonction transite dans l’état résistif, elle est chauffée par une
puissance RI2. La thermalisation des électrons s’opère par émission de
phonons. Comme à basse température le couplage électron-phonon n’est
pas efficace, la puissance injectée n’est pas complètement évacuée, et la
température électronique augmente. La jonction transite donc de N à S au
courant Ic(Te) < Ic(Tph), étant donné que Ic(T ) diminue exponentiellement
avec la température.
Nous avons trouvé un très bon accord entre théorie et expérience en modélisant
la puissance de refroidissement des phonons par Pph = Σ′ V (T 6

e − T 6
ph), où

Σ′ ∼ 5 10−8W µm−3K−6 et V est le volume du fil normal (voir figure 2).
La dépendance de Pph en T 6

e , et la valeur de Σ′, sont compatibles avec les
prédictions théoriques, mais , étonnamment, n’ont été mesuré qu’une fois par
Karvonen et al. [33], alors que d’autres obtiennent une dépendance en T 5

e

[49] [61].

Nous avons ensuite supposé une hystérésis intrinsèque, générée par la dy-
namique de la phase. Nous nous sommes pour cela inspiré des jonctions SIS.

Figure 1: (a) Characteristique dc tension-courant à T=25 mK: on ob-
serve une hystérésis dans la transition, très raide, entre l’état normal et
l’état supraconducteur. Les flèches indiquent le sens du courant (b) Char-
acteristique dc tension-courant à T=1.3 K: la transition devient douce, et
l’hystérésis disparâıt. Le fit décrit la dépendance V = R

√
I2 − I2

c .



vii

Figure 2: Dépendance en température du courant critique et du courant
de repiègeage pour le SQUID dc Nb-Au dont l’image SEM est montré en
inset. Les symboles carrés montrent les prédictions pour Ir en supposant
que l’hystérésis est d’origine thermique et que la puissance de refroidisse-
ment des phonons suit la loi de puissance Pph = Σ′ V (T 6

e − T 6
ph), avec

Σ′ = 5.5 10−8W µm−3K−6.

Dans une jonction SIS on prédit dans le modèle RCSJ une courbe V(I)
hystérétique pour des facteurs de qualité Q > 1. Q est défini par Q = τ ωp,
où τ = RC est le temps de relaxation de la phase (R et C sont la résistance
et la capacité de la jonction SIS), et ωp est la fréquence plasma.
Song a montré [54] que l’hystérésis de liens faibles supraconducteurs pouvait
être expliquée par la dynamique de la phase si on remplaçait le temps de
relaxation RC d’une jonction SIS par le temps de relaxation caractéristique
du nouveau système.
Nous avons remplacé le temps RC par le temps de relaxation inélastique de
l’énergie τin, déduite de façon indépendante (voir sec. 3.6). Puisque RC est
le temps qu’il faut à la phase pour perdre l’énergie cinétique acquise dans
l’état N, et relaxer dans l’état S, de façon analogue, τin est le temps qu’il
faut aux électrons pour perdre l’énergie acquise dans l’état N par collision
inélastique et relaxer dans l’état S.
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À partir de la relation du modèle RCSJ, Q = τ ωp = (4/π) (Ic/Ir), et
des courbes expérimentales Ic(T ), Ir(T ) et τin(T ), nous avons déduit une
fréquence plasma effective. Nous avons trouvé une fréquence indépendante
de la température et proportionnelle au taux de diffusion.
Les deux temps caracteristiques d’une jonction longue SNS sont donc le temps
de relaxation inélastique de l’énergie et le temps de diffusion.
Nous avons jusqu’à maintenant supposé la corréspondance entre le temps
τin, déduit expérimentalement, et le temps RC, et nous avons déduit dans le
cadre du modèle RCSJ la corréspondance ωp ↔ τ−1

D .
Pour confirmer cette déduction, nous avons ensuite raisonné à l’inverse: en
supposant la corréspondance ωp ↔ τ−1

D nous avons déduit le temps inélastique
pour les échantillons où une mesure de τin n’avait pas été effectuée. Si nos
suppositions sont bonnes, on devrait retrouver la dépendance en température
du temps électron-électron à T . 1K et du temps électron-phonon à T &
1K.
Nous observons à T ∼ 1K un taux de relaxation τ−1 ∼ 1.3 108 T 1.5 s−1K−1.5,
et à plus basse température une saturation progressive, qui pourrait être due
à une rélaxation de l’énergie liée aux impuretés magnétiques [45].
Ce résultat pourrait être compatible avec le taux de relaxation inélastique
prédit dans un système de taille finie [6], mais des mesures ultérieures sont
nécessaires pour avoir une réponse définitive.

Dépendance en température du courant critique

La dépendance en température typique du courant critique est montrée en
figure 2. À basse température, nous observons une saturation du courant cri-
tique Ic. À haute température, par contre, Ic(T ) décroit exponentiellement
sur une échelle de température qui correspond au minigap.
Les expressions analytiques obtenues par P. Dubos en ajustant le calcul
numérique des équations d’Usadel [18] reproduisent très bien nos dépendances
Ic(T ). Ces ajustements nous permettent de déduire avec une bonne précision
l’énergie de Thouless et la résistance intrinsèque de nos jonctions.
La seule déviation de la théorie est le régime de très basses températures, où
nous observons une région de saturation plus large que prévu, et un courant
critique inférieur à la valeur attendue. Même en prenant en compte une
transmission non parfaite des interfaces, la largeur de la région de saturation
reste incomprise. Nous n’avons pas trouvé d’explication satisfaisante à cet
effet.
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Dépendance en champ magnétique du courant critique

Nous avons mesuré la dépendance du courant critique en fonction d’un champ
magnétique appliqué perpendiculairement à l’échantillon.
Nous observons dans les SQUIDs dc deux échelles caracteristiques du champ
magnétique: H = Φ0/S et H = Φ0/SJ , où S est la surface de l’anneau et SJ
la surface de la partie normale.

À faible champ magnétique, Ic(H) oscille avec une période Φ0/S. Nous
arrivons à décrire complètement la forme et la période des oscillations en
utilisant un modèle développé pour des jonctions SIS par C. D. Tesche et V.
Lefevre-Seguin, et repris par F. Balestro [55] [38] [4] (voir la figure 3). Nous
ne trouvons donc aucune signature de la physique de la partie normale.

Figure 3: Dépendance à faible champ magnétique du courant critique d’un
SQUID Al-Au en fonction du flux dans l’anneau renormalisé, Φ/Φ0 =
HS/Φ0. Le fit (ligne rouge) est la dépendance d’un SQUID SIS de même
surface et avec une asymétrie en courant critique entre les deux jonctions.

À fort champ magnétique, la dépendance des jonctions et des SQUIDs dc
s’éloigne de la figure d’interférence de Fraunhofer attendue pour une jonction
SIS.
En particulier, nous avons remarqué que la géométrie du fil normal influence
grandement les courbes Ic(H): dans les jonctions avec des fils normaux longs
et fins, Ic(H) décroit comme une gaussienne, tandis que dans le cas de fils
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larges et de rapport d’aspect L/w . 1, Ic(H) ressemble de plus en plus à
une figure de Fraunhofer.
Le modèle 1D semiclassique développé par G. Montambaux [41], et les calculs
numériques résolvant les équations d’Usadel proposés par J. C. Cuevas [13],
reproduisent bien nos expériences.

Figure 4: Courant critique en fonction du flux magnétique dans le fil de métal
normal, pour deux jonctions W-Au de géométrie très différente. (a) Dans
le cas d’une jonction presque carré de rapport d’aspect L/w = 0.7 (image
SEM en inset), Ic oscille en rappelant une fonction de Fraunhofer. Le fit
vert est donné par la résolution des équations d’Usadel. La ligne bleue est la
première période du fit vert à l’échelle des données. (b) Dans le cas d’une
jonction longue et fine de rapport d’aspect L/w = 4.5 (image SEM en inset),
Ic décroit comme une fonction gaussienne. La ligne rouge est une fonction
gaussienne, la ligne jaune est donné par la résolution des équations d’Usadel.

Dans certains échantillons Al-Au, nous avons observé une surprenante
réentrance du courant critique à faible champ magnétique (H . 45G) et à
basse température (T . 100mK), montrée en figure 5.
Une possible explication de cette réentrance est donnée par la présence d’un
faible contenu en impuretés magnétiques. À faible champ, H aligne les mo-
ments magnétiques des impuretés, diminuant ainsi le spin-flip et augmentant
la supraconductivité. À fort champ, par contre, l’effet de brisure de paires
par le champ magnétique est prédominant.
Cette supposition explique bien l’échelle de température d’apparition de la
réentrance et son amplitude, mais l’échelle de champ magnétique prédite
est deux ordres de grandeur supérieure à celle observée. De plus, comment
échantillons fabriqués en même temps peuvent-ils différer par leur concentra-
tion en impuretés magnétiques?
Une deuxième explication possible est que la réentrance soit due à un ef-
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fet mésoscopique semblable à la localisation faible. Dans ce cas, l’échelle de
champ magnétique prédite est compatible avec les expériences, mais l’amplitude
de la réentrance mesurée est 20 fois plus grande que celle attendue.
Nous cherchons encore une explication satisfaisante.

Figure 5: Courant critique en fonction du flux magnétique dans le fil de métal
normal pour un SQUID (a) et trois jonctions (b) Al-Au. On remarque dans
tous les cas une réentrance du courant critique à des petits champs. Le fit
rouge est une fonction gaussienne.

Paliers de Shapiro

Nous avons mesuré la caractéristique dc d’une jonction W-Au en présence
d’irradiation rf.
Quand une jonction est dans l’état résistif, la différence de phase δ varie avec
le temps (2eV ∝ ~ δ̇ = ~ωJ). Irradier l’échantillon de micro-ondes revient à
moduler la tension V à la fréquence rf. Quand ωJ = nωrf , une composante
dc du courant Josephson apparâıt, et des plateaux de courant se forment
dans la relation tension-courant: ils s’agit des paliers de Shapiro. Une re-
lation courant-phase IJ(δ) sinusöıdale génère des paliers à n entier, tandis
qu’une IJ(δ) contenant des harmoniques produit des paliers avec un indice n
fractionnaire.
À basse température (T ∼ 150mK), des paliers de Shapiro entiers et frac-
tionnaires sont visibles jusqu’à des tensions plus grandes que l’énergie de
Thouless et pour des fréquences d’irradiation plus grandes que le minigap.
Donc, dans l’état résistif et très loin de l’état supraconducteur, les électrons
sont encore couplés en paires d’Andreev et le courant Josephson est anhar-
monique.
Nous avons mesuré la dépendance en champ magnétique des paliers entiers
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et fractionnaires. Nous avons trouvé que les paliers entiers dépendent du
champ comme le palier à n=0, qui est le courant critique. Les pas fraction-
naires (n=1/2, n=1/3), par contre, semblent décroitre plus lentement que
Ic(H).
Si ces pas fractionnaires étaient dûs à des réflexions d’Andreev multiples à
l’équilibre, on s’attendrait à ce qu’ils décroissent plus vite que Ic(H). Comme
ce n’est pas le cas, il faut trouver une autre origine aux harmoniques présentes
dans la relation courant-phase. Nous croyons que ces harmoniques sont
générées par un effet hors équilibre semblable à ceux qu’on observe en réponse
à une modulation de phase, mais d’autres expériences sont nécessaires pour
le prouver.

Reponse d’une jonction SNS longue à une mod-

ulation du courant haute fréquence

Nous avons mesuré la caractéristique dc tension-courant de jonctions longues
Nb-Al excitées par un courant ac dont nous avons varié la fréquence entre
100 kHz et 40 GHz.
Les jonctions Nb-Al ont été fabriquées par évaporation sous angles de Nio-
bium (la partie supraconductrice) et d’Aluminium (la partie normale). Le
masque suspendu nécessaire à ce type d’évaporation est une résine spéciale
formée par le tricouche PMMA-Si3N4-PES. Cette résine peut supporter de
très hautes températures sans dégazer ses impuretés, et cette condition est
fondamentale pour évaporer un métal réfractaire tel que le Nb.
Les jonctions ont été mesurées à des températures entre 1.4K (au dessus
de la température critique de l’Al, T ∼ 1.2K), et la température de l’He4

liquide, T ∼ 4K. Dans cette gamme de température, la nature supracon-
ductrice de l’Al, qui forme la partie normale de la jonction, ne semble pas
affecter qualitativement les résultats, qui sont les mêmes que pour une jonc-
tion contenant un vrai métal normal. Quantitativement, par contre, nous
observons une augmentation globale du supercourant d’au moins un ordre
de grandeur.
Nous observons dans la caractéristique V(I) à basse température, qui est
hystérétique, plusieurs régimes en fonction de la fréquence des micro-ondes.

À basse fréquence (f . 50MHz), la tension dc suit adiabatiquement la
courbe V(I) dc, de courant critique Ic et de courant de repiègeage Ir.
Pour une petite amplitude du courant ac, 2 Iac < Ic − Ir, le courant critique
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Figure 6: Caractéristiques tension-courant d’une jonction Nb-Al de longueur
L = 0.33µm à (a) f=10 MHz et (b) f=100 MHz pour un courant ac croissant
(de la droite vers la gauche). En l’absence d’excitation, la courbe V(I) est
donnée par la ligne noire en pointillé. La courbe verte (tirets) correspond à la
courbe attendue dans le régime adiabatique. (c) Dépendance en température
de la fréquence fr, fréquence seuil au delà de laquelle on sort du régime
adiabatique.

est diminué en I1
c = Ic − Iac et le courant de repiègeage est augmenté en

I1
r = Ir + Iac.

Pour une grande amplitude du courant ac, 2 Iac > Ic−Ir, deux sauts abrupts
de tension sont visibles dans la caractéristique, le premier à I1

c = Ic − Iac et
le deuxième à I2

c = Ir + Iac. Entre I1
c et I2

c la modulation est telle que la
jonction oscille entre l’état supraconducteur et l’état résistif. En figure 6 (a)
nous montrons la caractéristique dc (en pointillé noir), et les courbes V(I)
mesurées pour des valeurs toujours plus grandes de courant ac.
Nos expériences reproduisent exactement les prévisions que nous venons
d’exposer. Une comparaison entre la courbe expérimentale verte et la courbe
attendue dans le cas adiabatique montre cet excellent accord. La jonction
suit donc adiabatiquement l’excitation.

À des fréquences intermédiaires (50MHz < f < 500MHz), le courant
de repiègeage est fortement modifié pour des fréquences supérieures à fr. Sur
la caractéristique dc on observe que les deux sauts de tension sont remplacés
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continument par un seul saut, à I1
c = Ic − Iac (voir la figure 6 (b)).

En mesurant sa dépendance en température, nous avons déduit que la fréquence
fr correspond au taux inélastique électron-phonon τ−1

e−ph (voir la figure 6 (c)).
Nous mesurons fr = 1.9 107 T 3 s−1K−3, en accord avec des expériences
précédentes sur des fils d’Al [51].
Cet effet dynamique peut être compris si on suppose que l’hystérésis a, au
moins partiellement, une origine thermique. La jonction peut alors tran-
siter de l’état résistif à l’état supraconducteur seulement si la température
électronique est assez basse (Ir = Ic(Te)), ce qui nécessite que la puis-
sance Joule soit complètement dissipée dans le substrat par des processus
inélastiques. À T & 1K, le processus inélastique prédominant est la collision
électron-phonon.
Quand la fréquence est plus grande que le taux électron-phonon, la puissance
dissipée par la jonction dans son état résistif n’a plus le temps d’être évacuée.
La jonction alors chauffe, et le courant de repiègeage diminue. Le courant ac
n’est plus alors suffisant pour cycler entre l’état N et l’état S, et les doubles
sauts de tension disparaissent.
Un effet similaire est reproduit par le modèle RCSJ, pour des jonctions
SIS de facteur de qualité Q du même ordre que ceux de nos expériences
(Q = 4/π Ic/Ir ∼ 1.5 − 10), quand la fréquence de modulation ac dépasse
f = 1/RC. Nous avons donc établi un parallèle entre le temps de relaxation
de la phase RC dans une jonction SIS et le temps de relaxation de l’énergie
τin dans une jonction SNS.

À haute fréquence (f > 5GHz), nous observons une forte augmentation
du courant critique sur une large gamme de températures. Le courant de
repiègeage, par contre, n’est pas du tout affecté.
Nous montrons en figure 7 l’effet d’une modulation du courant à f=39 GHz
sur Ic et Ir. En présence des micro-ondes, Ic est augmenté en Irfc sur une
plage de plus de 2 K.
À T/ETh ∼ 20, les micro-ondes doublent le courant critique dans les échantillons
courts ainsi que dans les longs.
Le courant critique augmente avec la fréquence rf et semble osciller avec la
puissance rf (mais nous n’observons qu’une période d’oscillation).
En figure 8 nous montrons le courant critique en fonction de la puissance rf
pour des fréquences croissantes.

Le même phénomène avait été vu dans des fils supraconducteurs et des
jonctions SIS, pour des fréquences supérieures au taux inélastique, et à des
températures très proches de la température critique. L’augmentation du
courant critique était dans ce cas due à une augmentation effective du gap
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Figure 7: Dépendance en température du courant critique et du courant de
repiègeage d’une jonction Nb-Al de longueur L = 0.33µm, en l’absence de
modulation (Ic, Ir), et en présence d’une modulation à fréquence f=39 GHz
(Irfc , Irfr ). Inset: image SEM de l’échantillon mesuré.

qui se produit lorsque la fréquence de pompage des quasiparticules à basse
énergie est plus grande que leur taux de relaxation (voir inset de la figure
8). Dans notre cas, la fréquence caractéristique est 100 fois plus grande que
le taux inélastique, et l’augmentation est présente sur une grande gamme de
températures.
La fréquence caractéristique fc pour l’apparition de l’augmentation du courant
critique semble liée au taux de diffusion τ−1

D : comme τ−1
D , fc ne varie pas avec

la température et dépend fortement de la longueur du fil normal.
Si on applique un champ magnétique dc, fc augmente en H2 pour des
températures proches de la température critique de la supraconductivité de
proximité, Tc,N , tandis que pour T << Tc,N , fc est non-monotone (voir la
figure 9).
Le champs magnétique agit en fait à haute température comme un mécanisme

de cassure de paires, avec un taux typique τ−1
H ∝ H2. L’excès de quasi-

particules créé par le champ magnétique affaiblit la supraconductivité, et
l’augmentation du courant critique est observée seulement si l’excitation est
plus rapide que la cassure des paires.
À T/Tc,N = 0.35, fc décroit à bas champ, pour augmenter ensuite (voir figure
9). On peut deviner dans ce comportement la compétition entre la cassure
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Figure 8: Courant critique en fonction de la puissance rf d’une jonction Nb-
Al de longueur L = 0.78µm à T = 1.6Kpour des fréquences croissantes
entre f=3 GHz et f=39 GHz. Pour f > 7GHz le courant critique augmente
de façon monotone avec la fréquence.

Figure 9: Fréquence caractéristique pour l’augmentation du courant en fonc-
tion du flux magnétique dans la jonction, pour différentes températures.



xvii

de paires à fort champ et la décroissance du minigap en fonction du champ
à bas champ.

Réponse d’une jonction longue SNS à une mod-

ulation de la phase haute fréquence

Nous avons mesuré la réponse haute fréquence du courant d’une jonction
longue W-Au dans une géométrie annulaire.
Nous avons modulé la différence de phase aux bornes du fil normal à haute
fréquence (0.2ETh < hf < 1.37ETh) et à haute température (6ETh <
kB T < 11ETh), et nous avons mesuré les parties du courant en phase et
hors phase avec l’excitation.
Pour cela, nous avons couplé inductivement un anneau supraconducteur in-
terrompu par un long fil normal (SQUID ac) à un résonateur multimodal
supraconducteur qui opère dans une large gamme de fréquences; nous l’utilisons
entre f=365 MHz et f=6 GHz.

Le fil d’or qui constitue la partie normale est fabriqué directement par
lithographie et évaporation standard sur le substrat du résonateur. Il est
ensuite connecté à une ligne du résonateur en Nb par fils de W, qui sont
déposés en décomposant un gaz de Tungstène avec un faisceau d’ions Gallium
focalisés (voir la figure 10).
Grâce à l’extrême versatilité du processus de fabrication, il nous a été possible
de modifier, après un premier set de mesures, la géométrie de l’anneau, pour
l’adapter aux exigences de la mesure, sans par ailleurs toucher à la jonction
SNS elle-même.

Le résonateur multimodal supraconducteur génère un flux magnétique
haute fréquence dans le SQUID ac autour d’une valeur donnée par un flux
dc. Comme le flux dans l’anneau est proportionnel à la différence de phase
aux bornes du fil normal, nous modulons ainsi la phase.
Le résonateur est, de plus, un détecteur haute fréquence: en mesurant les
variations de la fréquence de résonance et du facteur de qualité du résonateur
en fonction de la phase dc, nous pouvons accéder à la réponse en phase et
hors phase du courant circulant dans le SQUID.
Grâce au grand facteur de qualité de nos résonateurs, Q ∼ 104, nous arrivons
à détecter des variations extrêmement petites: δf/f ∼ 10−9 et δ(1/Q) ∼
10−10. Nous pouvons alors mesurer la réponse d’un seul SQUID ac.
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Figure 10: Image SEM du SQUID ac en W-Au. Le fil d’or, entouré par une
ligne jaune en pointillé, est connecté à une ligne du résonateur par fils de W.

À basse fréquence, on s’attend à ce que le supercourant suive de façon adia-
batique l’excitation ac. La réponse sera alors complètement en phase et égale
à χ′(ω = 0) = ∂IJ/∂Φ ∝ Ic cos(2πΦ/Φ0).
Quand on dépasse les fréquences caractéristiques de la jonction SNS, la
réponse dynamique acquiert une partie dissipative hors phase.
Nous observons, au delà de la réponse en phase χ′, une réponse dissipative
χ′′ plus grande que la réponse en phase elle-même à toutes les températures
et fréquences explorées.
Comme la réponse à fréquence nulle, à la fois χ′ et χ′′ oscillent avec une
période Φ0 à fréquence finie. Mais, dans une gamme de températures où la
réponse dc est complètement cosinusöıdale, nous observons à fréquence finie
un contenu en harmoniques important (voir la figure 11).

Quand on augmente la température, l’amplitude de χ′ décroit exponen-
tiellement, tout comme le courant critique. L’amplitude de χ′′, par contre,
décroit avec la température deux fois plus vite que χ′.
Quand on augmente la fréquence, l’amplitude des réponses en phase et hors
phase, δχ′ et δχ′′ décroit. La figure 12 montre les amplitudes δχ′ et δχ′′ en
fonction de la fréquence, à T=0.67 K et T=1K. Dans les deux cas, δχ′ décroit
plus vite que δχ′′.
En particulier, δχ′ et δχ′′ correspondent à une relaxation de Debye δχ =
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Figure 11: Réponses en phase (χ′) et hors phase (χ′′) en fonction du flux
dc dans l’anneau Φint à f=365 MHz et T=0.67 K. Ces réponses à fréquence
finie sont comparées à la réponse dc χ′(ω = 0), en pointillé.

1/(1 + iω τA), caractérisée par un temps de relaxation τA = 0.6± 0.2ns. Ce
temps de relaxation est indépendant de la température, et du même ordre
de grandeur que le temps de diffusion: τA = 7.5 τD. On peut donc sup-
poser que nous observons une décroissance de la réponse due à une situation
hors-équilibre des niveaux d’Andreev.

Il est possible de calculer l’amplitude et la dépendance en flux des réponses
en phase et hors phase à f=365 MHz si on considère la dynamique des pop-
ulations des niveaux d’Andreev. Ces populations relaxent avec un temps
caractéristique correspondant au temps inélastique, que nous estimons être
dans notre cas τin = 50ns. Ce temps correspond à une fréquence f=3 MHz.
Comme nous travaillons à des fréquences 100 fois plus grandes, nous pouvons
considerer que les populations sont complètement gelées.
La réponse du courant, qui s’écrit en général en fonction des populations pn
et des courants in du nième niveau d’Andreev:

χ =
∂I

∂Φ
=
∑
n

∂pn
∂εn

1

1 + iω τin

∂εn
∂Φ

in +
∑
n

pn
∂in
∂Φ

(2)

se simplifie pour ω >> τ−1
in :

χ =
∑
n

pn
∂in
∂Φ

(3)
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Figure 12: Amplitude de la réponse en phase δχ′ et hors phase δχ′′ en fonction
de la fréquence à T=0.67 K et T=1K. Les expériences sont comparées aux
parties en phase et hors phase d’une relaxation de Debye, 1/(1 + ω2 τ 2

A) et
ω τA/(1 + ω2 τ 2

A), avec τA = 0.6± 0.2ns.

Nous ajoutons à cela la rélaxation observée en figure 12:

χ =

[∑
n

pn
∂in
∂Φ

]
1

1 + iω τA
(4)

Cette expression a été calculée par P. Virtanen et T. T. Heikkilä; leurs
résultats pour la réponse en phase sont comparés à nos mesures en figure 13.
On peut voir qu’on obtient un accord excellent entre la forme et l’amplitude
des courbes expérimentales et théoriques.

Abandonnant le régime de réponse linéaire, nous avons augmenté la puis-
sance rf et mesuré la réponse hors-équilibre du courant.
Les effets non-linéaires apparaissent au dessus de la puissance critique Pc,
qui varie en fonction de la température et de la fréquence. En particulier,
aux fréquences et températures les plus hautes, il est difficile d’atteindre le
régime de réponse linéaire.
Dans ce régime, la réponse dissipative, proportionnelle à δ(1/Q), augmente
grandement en correspondance des multiples impairs de Φ0/2. C’est juste-
ment pour ces valeurs de flux que le minigap se ferme complètement, ce
qui fait que la moindre excitation peut transférer des quasiparticules à la
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Figure 13: Comparaison des expériences et de la théorie pour la réponse en
phase à f=365 MHz et f=1.5 GHz et à T=0.67 K.

bande de conduction, augmentant ainsi la dissipation. Quand on augmente
la puissance rf, les pics de dissipation deviennent des plateaux de largeur
grandissante (voir la figure droite de 14). La réponse en phase, proportion-
nelle à −2δf/f , est aussi modifiée en correspondance des multiples impaires
de Φ0/2, avec l’apparition de pics négatifs. Le comportement observé rap-
pelle la relation dc courant-phase mesurée sous irradiation de micro-ondes
par C. Strunk: une deuxième harmonique importante apparâıt en fait à des
multiples impair de Φ0/2 [25].

Conclusions

Nous avons exploré les propriétés dynamiques de jonctions longues Supraconducteur-
Métal normal-Supraconducteur.
Nous avons utilisé une ample gamme d’échantillons, dont nous avons variés
les matériaux composant les contacts supraconducteurs, la longueur et la
géométrie des fils normaux, et le type d’interfaces.
Nous avons imposé une excitation à haute fréquence de différentes façons:
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Figure 14: Réponse en phase, proportionnelle à −2δf/f , et réponse hors
phase, proportionnelle à δ(1/Q), dans le régime non-linéaire pour des puis-
sances rf croissantes.

par le biais d’une antenne couplée faiblement à l’échantillon, en modulant
le courant ou en modulant la différence de phase aux bords de la jonction
normale. Nous avons exploré aussi bien le régime de réponse linéaire que le
régime fortement hors-équilibre.
Le but de ces expériences est de repérer les mécanismes qui contrôlent la dy-
namique dans une jonction longue supraconducteur-normal, où la physique
de la partie normale a une importance fondamentale. En particulier, nous
nous attendons à voir de forts changements dans la caractéristique dc tension-
courant, ou dans la réponse haute fréquence de la jonction, quand la fréquence
de l’excitation dépasse une des fréquences caractéristiques de la jonction SNS.
Nous avons idintifié deux temps caractéristiques: le temps de relaxation
inélastique de l’énergie τin et le temps de diffusion τD à travers la partie
normale de la jonction.
Ces deux temps régissent les transitions entre l’état supraconducteur et l’état
résistif de la jonction et la réponse du courant à haute fréquence.



Chapter 1

Introduction

In a classical BCS superconductor, electrons with opposite spins form co-
herent pairs, called Cooper pairs. These pairs condense in a macroscopic
quantum state, described by a wave function |ψ| ei θ. The condensate is char-
acterised by a zero electrical resistance.
The superconducting correlations extend over a length ξ, the pair correlation
length (ξ ∼ 40nm in clean niobium).
When two superconductors are separated by an insulating layer a few Å thick,
the superconducting wave functions of the two contacts overlap. Cooper pairs
can then tunnel from one contact to the other when a macroscopic phase dif-
ference between the two superconductors is present. This non-dissipative
current of Cooper pairs is called supercurrent.
If, instead, we separate the two superconducting contacts by a normal metal
wire longer than ξ, in which no attractive potential is present, we would ex-
pect the superconductivity to exist only at the NS interfaces.
However, surprisingly, the superconducting correlations manage to propagate
in the normal wire [44] [11] by means of the Andreev pairs. Andreev pairs
are electron-hole coherent pairs, created by a coherent quasiparticle reflexion
at the NS interface. Indeed, an electron colliding with the NS interface is
retro-reflected in a hole whose phase depends on the incident electron phase
and on the superconductor phase. In this way, the information about the
phase of a superconducting contact is carried along the normal metal to the
other superconducting contact. This is evidently possible only as long as
the Andreev pair remains coherent. Two conditions are then imposed to the
length L of the normal metal:

• L < Lϕ : the normal metal has to be shorter than the phase coherence
length Lϕ, length over which the electron and the hole lose individually
the memory of their phase (Lϕ & 1µm at T < 1K).
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• L < LT : the normal metal has to be shorter than the thermal length
LT , length over which the electron and the hole composing an Andreev
pair are dephased by the thermal energy.
In fact, the electron and the hole have an energy difference of 2ε ∼ kB T
which gives a phase difference 2ε

~ t. The thermal length correspond to

the time for a 2π dephasing: LT =
√
D t ∼

√
~D/kB T .

A long Superconductor- Normal metal - Superconductor (SNS) junction
is similar, but much more complicated and interesting than a Superconductor
- Insulator - Superconductor (SIS) junction.
In both systems, the presence of the superconducting contacts generates a
phase dependent, non-dissipative current in the absence of a voltage. But
in a SNS junction, the interplay between the superconducting correlations
introduced in the normal metal, and the properties of the normal metal itself,
more and more important when increasing the wire’s length, create a new
hybrid system.
Despite the large amount of work devoted to SNS junctions, starting from the
pioneering work of J. Clarke [9], their dynamics is still an open issue. What
are the relevant times in a SNS junction? In this thesis we try to identify the
times that control the current response of an SNS junction, and probe the
junction behavior at frequencies larger than the inverse of the characteristic
times.

1.1 Josephson Junctions

A Josephson junction is a Superconductor-Insulator-Superconductor tunnel
junction.
As we have seen above, the two superconducting states are coupled through
the tunneling of Cooper pairs. A supercurrent flows, in the absence of a
voltage, when a phase difference is applied across the junction.
Josephson was the first to predict the existence of a supercurrent in an SIS
junction, and to deduce how the supercurrent and the dc voltage across the
junction are related to the macroscopic phases of the superconducting con-
tacts [32].

1.1.1 DC Josephson effect

Let’s define ψ1 = |ψ1| ei θ1 and ψ2 = |ψ2| ei θ2 as the complex wave functions
of the contacts superconducting states. Because of the system symmetries,
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one expects the junction energy to be proportional to ψ1×ψ2, and symmetric
in ψ1 and ψ2. The simplest general expression is [39]:

E ∝
∫
dy dz

[
|ψ1 ψ2| −

1

2
(ψ1ψ

∗
2 + ψ∗1ψ2)

]
=

∫
dy dz

[
|ψ1 ψ2|(1− cos(θ1 − θ2))

]
(1.1)

where the junction SI interface is on the y − z plane.
θ1−θ2 = δ is the phase difference between the two superconductors and plays
a crucial role in the physics of the Josephson junctions.
The supercurrent density js is the derivative of the energy density ε with
respect to the phase δ:

js ∝
∂ε

∂δ
= jc sin(δ) (1.2)

Integrating over the junction surface we obtain the first Josephson relation,
relating the supercurrent Is to the phase difference across the junction:

Is = Ic sin(δ) (1.3)

where Ic is the critical current, the maximum of the supercurrent.

1.1.2 AC Josephson effect

A voltage across the junction leads to a difference in the chemical potentials
at the junction sides:

µ2 − µ1 = −2 |e|V (1.4)

Because of the temporal dependence of the wave functions:

ψ ∝ e−i µ t/~ (1.5)

the phase difference between the superconductors evolves in time:

δ =
−(µ2 − µ1) t

~
=

2 |e|V
~

t (1.6)

We derive thus the second Josephson relation:

δ̇ =
2 |e|V

~
(1.7)

Imposing a constant voltage across the junction leads then to a harmonic
oscillation of the supercurrent:

Is = Ic sin(δ0 +
2 |e|V

~
t) (1.8)

And, reversing the second Josephson relation, a phase varying in time gen-
erates a voltage across the junction.
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1.1.3 SQUID

The DC and AC Josephson effects relate the supercurrent and the voltage of
an SIS junction to the superconducting phase difference across the junction.
But how can one directly control the phase? This is possible in a SQUID
geometry.
An AC SQUID is a Superconducting QUantum Interference Device consisting
of a superconducting ring interrupted by a SIS junction. When applying a
magnetic field, the phase across the junction is proportional to the magnetic
flux Φ through the ring (see appendix A):

δ = −2π
Φ

Φ0

(1.9)

where Φ0 = h/(2 e) is the superconducting quantum flux.
The supercurrent in the SQUID is then diamagnetic at low flux:

Is = − Ic sin

(
2 π

Φ

Φ0

)
(1.10)

1.2 Hybrid Superconducting - Normal metal

long junction

Hybrid Superconducting-Normal metal-Superconducting junctions consist in
a non-superconducting metallic wire of length L confined between two su-
perconducting electrodes.
In a long SNS junction, the length of the normal metal wire is greater than
the superconducting coherence length in the normal metal, ξN =

√
~D/∆,

where D is the diffusion coefficient of the normal metal (for a Nb-Au junction
ξN ∼ 77nm).
A supercurrent, carried by the coherent electron-hole Andreev pairs, can nev-
ertheless run through the normal metal.
In the case of a diffusive metal (L >> le, where le is the mean free path),
the Andreev pairs diffuse across the normal wire in a time of the order of:

τD =
L2

D
(1.11)

The energy associated to the diffusion time in N is the Thouless energy:

ETh =
~
τD

=
~D
L2

(1.12)
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ETh is determined exclusively by the normal metal properties, and is inde-
pendent of the superconducting gap.
In long SNS junctions (L >> ξN or ETh << ∆), the characteristic energy is
the Thouless energy, while for short SNS junctions (L << ξN or ETh >> ∆),
the characteristic energy is the superconducting gap ∆.

1.2.1 Andreev reflexions

We now describe in more detail the Andreev reflexions, the mechanism that
permits the coherent transfer of a Cooper pair in a normal metal (see Fig.
1.1).
Let’s begin by studying what happens to a quasiparticle in a normal metal

Figure 1.1: Schematic view of an Andreev reflexion at the NS interface.

when it hits the NS interface.
Below the superconductor critical temperature Tc, and for low voltages V
across the junction, the thermal energy kB T and the potential energy e V are
smaller than the superconducting gap. Thus, an electron with E−EF << ∆
cannot pass into the superconducting contact, since there are no quasiparti-
cle states at the Fermi level and the electron doesn’t have enough energy to
access a quasiparticle state above the gap.
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The electron is then reflected with a probability equal to one. Moreover, only
the reflexion in a hole is possible, the classical reflection of a electron being
suppressed at the NS interface.
A normally incident electron, of energy εe = EF + ε, wave vector ke = kF + q
and phase ϕe is thus reflected in a hole, of energy εh = EF − ε, wave vector
kh = −kF + q and phase ϕh = ϕe + θ− arccos(ε/∆) ∼ ϕe + θ− π/2. The re-
flected hole phase depends then on the superconductor phase θ! In a similar
way, a hole is coherently reflected in an electron.
The charge transferred into the superconductor is the Cooper pair charge 2 e.
More precisely, the two electrons enter as evanescent waves in the supercon-
ductor and condense within the superconducting coherence length.

If we add a second SN interface, we form a SNS junction.
The hole produced by the reflexion at the first NS interface can then be re-
flected in an electron at the second interface, closing the cycle. If the length
of the normal part is small enough to insure coherence along the whole path,
a Cooper pair is transferred coherently from one superconducting contact to
the other, and a non-dissipative current flows into the normal wire.

In a long ballistic 1D SNS junction, an electron, starting from a contact,
reflected as a hole at the second superconducting contact and coming back
to the first one, is dephased of:

(ke − kh)L− 2 arccos(ε/∆) + θ1 − θ2 = 2π n (1.13)

where the two contacts are made by the same superconductor. This leads to
the following excitation spectrum (see Fig. 1.2 (a)):

ε =
h vF
2LN

[
n± θ1 − θ2

2π
+

1

π
arccos

(
ε

∆

)]
(1.14)

The non-dissipative current is given by Is ∝ ∂ε/∂(θ2− θ1), where ε is the
energy of the eigenstate. This energy differs from the energy of the excited
states, since it takes into account the whole spectrum, including the levels
above the minigap. The resulting supercurrent is shown in Fig. 1.2 (b) [7].
The jumps of the current at the odd multiples of π smoothes out when intro-
ducing the disorder or when increasing the temperature, so that finally the
current-phase relation looses some anharmonicity and approaches that of a
SIS junction.

Let’s now consider long diffusive SNS junctions.
The Andreev bound states spectrum [50] is a quasi-continuum of phase
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Figure 1.2: (a) Energy excitation spectrum and (b) non-dissipative current
for a long 1D ballistic junction. δ = θ1 − θ2 is the phase difference between
the two superconductors.

dependent levels with a small energy gap, called the minigap (see Fig. 1.3).
The minigap ∆̃ is proportional to the Thouless energy (∆̃ = 3.1ETh), and is
fully modulated by the phase difference δ between the two superconductors.
∆̃ is maximum at δ = 0, and goes linearly to zero at δ = π.
This phase dependence was recently measured by scanning tunneling spec-
troscopy (see Fig. 1.4[37]).

The supercurrent of a long diffusive junction derived from such spectrum
is anharmonic [30]:

Is =
∑
n

Ic,n sin(n δ) Ic,n = −(−1)n
10.82ETh

eR

3

(2n+ 1)(2n− 1)

(1.15)
where R is the normal wire resistance. We show in Fig. 1.5 the current-phase
relation of a long SNS junction, compared to the harmonic current-phase
relation of a SIS junction.

The occurrence of higher harmonics in eq. 1.15 may be interpreted as
the transfer through the junction of n Cooper pairs by n coherent Andreev
reflexions (see Fig. 1.6). Indeed, if the coherence length is much longer than
the normal wire length, a quasiparticle can be Andreev reflected many times



8 Introduction

Figure 1.3: Phase dependent Andreev bound states for a long SNS junction
[2].

coherently, thus transferring a bunch of correlated Cooper pairs.
For Lϕ > nL, 2n Andreev reflexions are possible, conveying n Cooper pairs:
the effective charge transferred is n × 2 e, the effective Andreev trajectory
time is n2 τD and the superconducting phase difference accumulated is n δ.
A harmonic of order n appears then in the current-phase relation.

1.3 Relaxation times

As we have seen, the dc properties of long SNS junctions are well understood,
both theoretically and experimentally. On the contrary, their dynamics is still
far from being completely figured out, even if it raised much interest since
the ’60s.
Indeed, the dynamics of long SNS junctions is much more complicated than
that of SIS junctions, where the dynamics is exclusively the phase dynam-
ics. In a SNS junction, one has instead to consider the interaction between
the phase dynamics and that of the out-of-equilibrium quasiparticles in the
normal metal.
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Figure 1.4: Differential conductance versus voltage, for different values of the
phase difference δ across a 300 nm long Ag wire. Left quadrants: measured.
Right quadrants: calculated. Top: on the N side; Bottom: on the S side,
close to the interface (the scale is linear up to 0.02 and logarithmic above,
to magnify the variation for small subgap conductance). This shows that the
minigap is also present on the superconductor side with the same value as on
the N side [37].

In this thesis, after the dc characterisation of our junctions, we have
observed:

• the effects of a high frequency current modulation on the dc voltage-
current characteristic

• the effects of a high frequency irradiation, comparable to a voltage
modulation, on the dc voltage-current characteristic at I > Ic, in the
ohmic regime

• the high frequency current response of a SNS ac SQUID to a high
frequency phase modulation
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Figure 1.5: Normalised supercurrent vs phase difference δ for a SIS junction
(sinusoidal relation) and for a long SNS junction at low temperature (12
harmonics).

Figure 1.6: Harmonics in a SNS long junction current-phase relationship:
multiple coherent Andreev reflexions.

In general, we aim to identify the characteristic times of the current re-
sponse. If we increase the excitation frequency, we expect to observe out-
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of-equilibrium effects, in the dc or ac response, as soon as the frequency is
greater than the characteristic rates of the junction.
The Josephson current at equilibrium is the sum of the currents in carried
by the Andreev levels of energy εn, weighted by the level occupation pn:

IJ(δ) =
∑
n

in(δ) p(εn(δ)) (1.16)

We should then detect two characteristic times: the response time of the
distribution function pn appearing explicitly in the current expression, and
the diffusion time of Andreev pairs. In fact, if the pairs don’t have the time
to cross the normal wire during the measuring time, the adiabatic approxi-
mation fails. The Andreev bound states aren’t then defined any more, and
the density of states becomes out-of-equilibrium. In this case, the Josephson
current is affected through the currents in.

The response time of the occupations pn is the inelastic energy relaxation
time.
At high temperature (T & 1K), the inelastic process controlling the energy
relaxation of the electronic gas is the electron-phonon time. The electronic
temperature tends then towards the phonon bath temperature with a char-
acteristic time τe−ph.
At low temperature (T . 1K), the electron-electron time is the predominant
inelastic process. It is the time the electronic gas needs after an excitation
to form again an equilibrium Fermi-Dirac distribution.

In section 4.6.1 we show how the current response is affected when the
excitation approaches the inelastic rate.
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Chapter 2

DC properties of long diffusive
SNS junctions

Before beginning the high frequency part of this thesis, we study in this
chapter the DC properties of long SNS junctions. On one hand, this helps us
understanding how the physics change when the insulating layer of a classic
Josephson junction is replaced by a long normal wire, and on the other hand
this is a necessary step to characterise the junctions we fabricate when mea-
suring isolated SNS rings (see chapter 4).
We present in this chapter the temperature and field dependence of SNS
junctions of different geometries and with the contacts made of different su-
perconductors [23]. We have fabricated both single long SNS junctions and
dc SQUIDs, superconducting loops interrupted by two normal metal wires
in parallel.
The advantage of single Josephson Junctions is their simplicity: in a SQUID
the asymmetry between the two SNS junctions, never exactly identical, has
to be taken into account.
The advantage of dc SQUIDs is that they are modulable devices [10]: a dc
supercurrent can flow through a dc SQUID, provided that the coherence is
maintained. The supercurrent maximum value is periodically modulated by
a magnetic field, with a period of one flux quantum Φ0 = h/2e through the
loop area.
The chapter is arranged as follows: we first outline the sample fabrication
and the measurement setup. Then, we present the current-voltage curves at
low and high temperature. The temperature dependence of the critical and
retrapping current follows. Then, we discuss the dynamics of the SNS junc-
tions to explain the hysteresis and its temperature dependence. We shortly
study the low temperature transition towards the proximity induced super-
conducting state and the critical current statistics. We then concentrate on
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the magnetic field dependence of the critical current: we detail the interfer-
ence pattern in SNS dc SQUID at low field; the large scale field dependence
for all samples is then addressed and compared to the theoretical predic-
tions; we report moreover a surprising reentrance for some of the samples.
Finally, we study the field dependence of integer and fractional Shapiro steps.

2.1 Sample fabrication

For all SNS samples, we use as normal metal 99.9999% pure gold, with a
content in magnetic impurities (Fe) smaller than 0.1 ppm. In a separated
weak localisation measurement P. Billangeon determined the phase coherence
length of this gold: he obtained LΦ ∼ 10µm below 50 mK.
Three different superconductors contact the normal wires: Aluminum (Al),
Niobium (Nb), and Tungsten (W).
We label the samples as follows: if they are SQUIDs, the first two letters
of the name are SQ; then we indicate the superconductor (S) and then the
normal metal (N) materials; finally, we add a letter to distinguish the samples
with different normal wire lengths or geometries.
Our samples are:

• SQ-NbAu-L and SQ-NbAu-S
SQUIDs, Nb (S) and Au (N), Long (L) or Short (S)

• SQ-AlAu-a, SQ-AlAu-b and SQ-AlAu-c
SQUIDs, Al (S) and Au (N), labelled from the shortest (a) to the
longest (c)

• AlAu-a, AlAu-b and AlAu-c
wires, Al (S) and Au (N), labeled from the shortest (a) to the longest
(c)

• WAu-N and WAu-Sq
wires, W (S) and Au (N), Narrow (N) and Square (Sq)

The sample parameters, obtained by scanning electron microscopy (SEM)
visualization or transport measurements, are gathered in Table 2.1 and 2.2.
All the samples SQ-AlAu were produced on the same chip and have the same
material parameters (for example the diffusion coefficient D); the same is also
true for the samples SQ-NbAu-x, AlAu-x and WAu-x.
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sample L(µm) w(µm) t(nm)

SQ-NbAu-L 1.2 0.4 50

SQ-NbAu-S 0.75 0.4 50

WAu-N 1.53 0.34 50

WAu-Sq 1.2 1.75 50

AlAu-a 0.9 0.125 50

AlAu-b 1.25 0.125 50

AlAu-c 1.3 0.125 50

SQ-AlAu-a 0.9 0.13 50

SQ-AlAu-b 1.5 0.15 50

SQ-AlAu-c 1.9 0.2 50

Table 2.1: Geometric characteristics of the different samples. The length L
and width w have been deduced from the SEM images. The tickness t was
measured by a quartz cristal during the metal deposition.

sample ETh(K) ∆(K) ∆/ETh RJ,fit(Ω) RJ(Ω) RJ,�(Ω)

SQ-NbAu-L 0.051 16.2 318 1 1.4 0.34

SQ-NbAu-S 0.13 16.2 125 0.46 0.78 0.26

WAu-N 0.041 7.04 185 2 3 0.44

WAu-Sq 0.0618 7.04 123 0.31 0.31 0.45

AlAu-a 0.033 2.07 63 3 5 0.42

AlAu-b 0.044 2.07 47 6 6 0.6

AlAu-c 0.036 2.07 58 5 5 0.48

SQ-AlAu-a 0.047 2.07 44 3.8 5.2 0.44

SQ-AlAu-b 0.03 2.07 69 4.8 6.6 0.48

SQ-AlAu-c 0.026 2.07 80 5.4 6 0.56

Table 2.2: Characteristics of the different samples obtained by transport
measurements. The Thouless energy ETh = ~D/L2 and the resistance
Rfit have been deduced from the fit of Ic(T ). The diffusion coefficient is
D ∼ 1.2 10−2m2/s. The superconducting gap ∆ has been deduced from the
transition temperature Tc of the superconducting contacts, using the relation
∆ = 1.76 kBTc. We find Tc = 9.2K for the Nb, Tc = 4K for the W and
Tc = 1.17K for the Al.
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The length of the normal metal, which varies between 0.75µm and 1.9µm,
is much larger than the superconducting coherence length in the normal part
ξNS =

√
~D/∆ = L/

√
∆/ETh, where D ∼ 1.2 10−2m2/s is the diffusion

coefficient in the normal wire, ∆ is the superconductor gap and the Thouless
energy is ETh = ~D/L2. For all our samples, ∆/ETh > 40 (see table 2.2),
and L & 7ξ: the devices are in the long-junction regime . If ∆/ETh > 105

[19], the properties of the normal metal determine completely the proximity
effect. In our case, the superconductor still influences the junction behavior,
but the normal metal properties are predominant.

The three superconductors used (Al, Nb and W), differ by their transition
temperature.
The fabrication procedure also produces different S/N interface conditions.
In the angle-evaporated samples of Al-Au, at the SN junction, the bare Au
wires overlap with the Al; in addition, the Al loop is, at some point covered
by Au (depending on the loop shape, see Fig. 2.1). Therefore, the supercon-
ductor in this configuration is not completely homogeneous.
In contrast, in the Nb-Au samples, the superconductor is a homogeneous bi-
layer of Nb and Au, and the normal metal is a bare Au region. The interface
is thus a very different one, not horizontal in the overlap region, but vertical
between the proximity superconducting Au under the Nb and the bare Au.
Finally, in the W-Au samples, the SN junction is made by the overlap of
W and Au, but contamination (a thin layer of discontinuous W) is present
around the W wires (see Fig. 2.4).

2.1.1 Al-Au wires and SQUIDs

The proximity wires and dc SQUIDs made from Al and Au are obtained
by conventional double angle thermal evaporation through a PMMA-MMA
suspended mask.
At first, we evaporate a Au layer of thickness t=50 nm, and then an Al layer
of thickness t=200 nm, both at a rate of 1 nm/s; the evaporation order is
important to assure the continuity of the thinner layer.
The double-angle evaporation technique permits to obtain very low contact
resistances between the normal wire and the superconductor, the two evap-
orations following each other in a vacuum of 10−6 mbar.
The SEM images of four Al-Au samples are shown in Fig. 2.1.
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Figure 2.1: Scanning Electron Microscope images of samples SQ-AlAu-a (1),
SQ-AlAu-c (2), AlAu-b (3), SQ-AlAu-b (4).The white regions in the contacts
are probably PMMA resist.

2.1.2 Nb-Au SQUIDs

The process with Niobium as a superconductor, developed by L. Angers, is
more involved (see Fig. 2.2). It is indeed difficult to create good Nb-Au
interfaces using standard techniques. For example, classical double angle
evaporation is very difficult to use: the Nb is evaporated at such high tem-
peratures that the usual organic resists melt, and the lift-off of a thick Nb
layer becomes impossible. The solution L. Angers found is detailed below.
First, the surface is cleaned with an Oxygen plasma, to ensure adhesion of
a Au layer (we cannot use the classical adhesion layers, such as Cr or Pt,
because their magnetic properties would weaken the proximity effect).
In a 10−7 mbar vacuum we thermally evaporate a 50 nm thick Au layer,
we sputter a 200 nm thick Nb layer and finally we evaporate a 70 nm thick
aluminum layer. Since the Au and the Nb layers are deposited in the same
vacuum, we obtain a high quality SN interface.
Then by e-beam lithography we draw a rectangular window of the same width
as the desired normal wires (Fig. 2.2 (1)).
We wet-etch open the window in the Al mask with a MF319 solution, through
which we locally etch away the Nb using an SF6 RIE (Reactive Ion Etching).
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Figure 2.2: Fabrication steps for samples SQ-NbAu-L and SQ-NbAu-L. (1)
Multilayer mask and description of the processes used to etch each layer; (2)
upper view of the future sample when PMMA and Al have been removed and
only the Au-Nb bilayer, with the Nb etched in a rectangular zone, remains;
(3) deposition of a ring-shaped Al mask over the rectangular window opened
in the Nb; (4) elimination of all Nb and Au not covered by the Al mask; (5)
the sample, after dissolving the Al protective mask.

We finally eliminate all the remaining Al mask, obtaining a Nb-Au bilayer
with a window in the Nb layer (Fig. 2.2 (2)).
In a realignment step, we lithograph and evaporate a ring shaped Al mask
passing across the window designed previously; this mask protects the Nb-Au
bilayer forming the future dc SQUID (Fig. 2.2 (3)).
The remaining bilayer is removed by a SF6 RIE followed by an Argon IBE
(Ion Beam Etching) (Fig. 2.2 (4)).
Finally, the Al mask is removed (Fig. 2.2 (5)); SEM images of the samples
are shown in Fig. 2.3.
An important part of the fabrication was done at LPN (Laboratoire de Pho-
tonique et Nanostructures) in Marcoussis.
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Figure 2.3: Scanning Electron Microscope images of samples SQ-NbAu-S (a)
and SQ-NbAu-L (b). In sample SQ-NbAu-L, one can see at the edges of
the normal wires that the Nb hasn’t been completely etched; this causes the
reduction of the normal region length from the designed 1.8µm to 1.2µm. One
can also see the traces of the rectangular window used to define the normal
parts of the junctions (see Fig. 2.2 (2)), etched in the Si02 substrate; this
is due to the fact that in step (4), while the etching times are set to permit
the removal of a Nb-Au bilayer, in the window zone there is only a Au layer,
which is etched faster than the bilayer; the remaining time, the plasma etches
the substrate.

2.1.3 W-Au wires

The W-Au wires are made with a different method.
First, Au wires of the desired width are drawn by e-beam lithography and
evaporated on a substrate (we used either Si02 or sapphire substrates); align-
ment marks are also created.
The superconducting contacts are fabricated in a Dual beam microscope,
formed by a Scanning Electron Beam (SEM) aligned with a Focused Ion
Beam (FIB).
First, we slightly etch the Au wire with the FIB to remove possible oxidation
or impurities on its surface.
Then, we place at a few tens of µm above the sample a nozzle, which injects
a metallo-organic vapor of tungsten hexacarbonyl. This vapor is decomposed
by the focused Ga+ ion beam, and a dirty W metal is deposited on the sub-
strate. The wires produced are composed by tungsten, carbon, gallium and
oxygen with varying proportions (in our case, probably 75% W, 10% C, 5%
Ga and 40% O2).
The superconducting critical temperature of the wires produced is not 12mK,
like in bulk W, but, in all our samples, Tc ∼ 4K! This could be due to the
injection of Ga, which is itself a superconductor with Tc = 1K.
The critical magnetic field of the wires is also surprising high: at 1K,
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Figure 2.4: Scanning Electron Microscope images of samples WAu-Sq ((a)
and (b)) and WAu-N ((c) and (d)). One can see as a clear halo the W
contamination around the superconducting contacts.

Hc = 7T [34].
By changing the scanning parameters of the ion beam, we can fabricate su-
perconducting wires of the desired geometry at the desired position. The
minimum W wires width is about 100nm, and their thickness is controlled
by the irradiation time. A FIB current of 10 pA, with 40ns/pixel and 107

scans produces a wire 100 nm wide and 100 nm thick in 20s.
The deposition is done with a ion beam energy of 30 keV and a focused ion-
beam current of 30 pA. The gas temperature is set to 90 ◦C; during the wire
deposition the pressure in the chamber is 4 10−4 mbar.
After one wire deposition, thanks to the dual system, one can control the
result by SEM observation and determine the position of the next wire. This
can be particularly useful in the case of an insulating substrate such as sap-
phire, where the accumulation of charge on the substrate can deflect the ion
beam and thus shift the position of the deposited wire.
The main advantages of this technique are the deposition of the material of
practically any shape and size, without any mask, directly onto the substrate.
There are, of course, some disadvantages. An example is the extreme prox-
imity needed for the nozzles injecting the W vapor. The nozzles have to
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be lowered manually, and the distance nozzle-sample is determined by the
darkness of the nozzle’s shade on the substrate. An excessive lowering, like
in Fig. 4.6, can strongly affect the sample!
In conclusion, this technique is quite difficult and demanding, but gives a
great amount of freedom and possibilities for fabrication.
We were strongly helped for the fabrication by A. Kasumov and F. Fortuna.

2.1.4 Measurement setup

All measurements are done by biasing the sample with a dc current (up to
400µA), often modulated by a small ac current δI = 10 − 100nA at a few
tens of Hertz for differential resistance measurements.
In our setup, superconducting leads, in a four wire configuration, connect
the SQUIDs or the wires. Since the samples are connected at each end by
two wires, the current flows through the junction using two of the wires; the
voltage is measured across the two remaining ones, where no current passes,
so that the voltage drop is directly the junction voltage drop.
Samples Al-Au, SQ-AlAu and Nb-Au were cooled down to 15mK in a
He3 − He4 dilution refrigerator. The samples were bonded to 150 pF ca-
pacitors on the sample holder with Al-Si wires, in order to assure a good
filtering of the high frequency noise. Homemade lossy coaxial cables con-
nected the sample holder to room temperature low pass π filters.
Samples W-Au were cooled down to 50mK in a second He3 − He4 dilu-
tion refrigerator. In this case the sample holder was connected to the room
temperature π filters by simple lossy cables, but the dilution was equipped
with a high frequency (up to 18 GHz) coaxial cable we used for microwave
irradiation.
The temperature is varied up to 1.3K by a resistance on the sample holder
(at higher temperatures the dilution fridge is unstable).
A superconducting coil at the bottom of the cryostat provides a magnetic
field up to 5 T.

2.2 Voltage-current characteristic

The V(I) curve for sample SQ-NbAu-S at T=25mK is shown in Fig. 2.6 (a).
We polarise the sample with a dc current and we read the dc voltage across
the junction in a four-wire configuration.
Below the critical current Ic the junction is in a superconducting state, the
voltage is zero and a non dissipative supercurrent flows in the junction.
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For I = Ic, the junction abruptly jumps to a resistive state, a non-zero volt-
age appears across the junction and the V(I) relationship becomes ohmic.
If we decrease the bias current from I > Ic, the junction returns to the super-
conducting state only at a current Ir lower than the critical current, called
the retrapping current .

When increasing the temperature (Fig. 2.6 (b)), the curve becomes
non-hysteretic and the transition becomes smoother. Near the supercon-
ducting transition the V(I) curve has a square root dependence given by
V = R

√
I2 − I2

c (see Fig. 2.6 (b)).
All our samples, SQUIDs or simple wires, show the same qualitative behav-
ior than SQ-NbAu-S sample, but the temperature at which the hysteresis
disappears depends strongly on the length of the normal part.

Figure 2.5: Measurement setup. A voltage generator through a 1MΩ resis-
tance, supplies after filtering the dc current bias, while the Lock-in SR830
oscillator modulates the dc current at f ∼ 33Hz. The bias current, flowing
through the blue wires, is then I = Idc + δIac cos(2πft). The voltage across
the sample, V = Vm + δVm cos(2πft), is amplified by a low-noise amplifier
and arrives to the Lock-in. We then measure the differential resistance Rdiff :
δVm = ∂V

∂I
δIac = Rdiff

δVac
1MΩ

.
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2.3 Temperature dependence and Thouless en-

ergy

In Fig. 2.7 we show the temperature dependence of the critical current in
sample WAu-Sq. At low temperature, the critical current saturates, while at
high temperature Ic decays exponentially as:

Ic(T ) ∝ e−T/αETh (2.1)

This same dependence is observed in all our long SNS junctions, with α vary-
ing between 2.5 and 4. The decay of the critical current at high temperature
is thus controlled by an energy scale of about three times the Thouless en-
ergy. This suggests that the important energy scale here is not the Thouless
energy itself but the minigap ∆̃, which, in the absence of a magnetic field, is
∆̃ = 3.1ETh.

As we see in Fig. 2.7, the exponential behavior differs from the exact de-
pendence at the highest temperatures. This is quite a common feature, so
we use, instead of the exponential law, a more complete expression to fit the
temperature dependence.
Dubos et al. [18] have numerically calculated the exact Ic(T ) curve for a
long SNS junction solving the Usadel equations, and have found analytical
expressions valid in the low and the high temperature limits.

Figure 2.6: Dc voltage vs dc current for sample SQ-NbAu-S at (a) T=25 mK
and (b) T=1.3 K. The bias current is increased from zero and then, when in
the normal state, decreased back to zero; the arrows indicate the direction of
the current. We notice a strong hysteresis at T=25mK, that disappears when
increasing the temperature up to T=1.3 K. The fit is given by V = R

√
I2 − I2

c

with R = 0.343Ω and Ic = 35.6µA.
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Figure 2.7: Critical current vs. temperature for sample WAu-Sq. The green
straight line shows an exponential fit of equation Ic(T ) = 183 e−T/3.66ETh µA,
while the red line is the complete fit in the high temperature regime given by
eq.2.4 with parameters R = 0.31 Ω and ETh = 61.8mK .

The low temperature limit of Ic(T ), valid for kBT < 2.5ETh, within a 1%
error, is given by:

eRIc
ETh

= b

(
1− a e−bETh/(3.2 kBT )

)
(2.2)

In the case of a very long wire (∆/ETh > 5 104), the numerical values for a
and b are:

a = 1.3 b = eRIc(T = 0)/ETh = 10.82 (2.3)

In our samples, the ratio ∆/ETh ranges between 40 and 300, so that the
parameter b ranges between 8.8 and 10.48.
At high temperature, for kBT > 5ETh, the analytical approximation, within
a 3% error, is:

eRIc = 64πkBT

√
2πkBT

ETh

∆2e
−

√
2πkBT

ETh

(πkBT + ∆ +
√

2(Ω2 + ΩπkBT ))2
(2.4)
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where ∆ is the superconductor’s gap and Ω =
√

∆2 + (πkBT )2.
For a very long junction (∆/ETh → ∞), the previous expression simplifies
into:

eRIc =
32

3 + 2
√

2
ETh

(
2πkBT

ETh

)3/2

e
−

√
2πkBT

ETh (2.5)

We use the expressions for a finite ∆/ETh to fit our data and find the values
of the ohmic state resistance R and the Thouless energy ETh.
Of course, R can also be obtained by a differential resistance measurement,
and ETh can be calculated from the resistance and the geometrical parameters
of the sample (see sec. 3.2), but the fit of the temperature dependence
permits, on one hand, to confirm the values found in these other ways, and
on the other hand, to precise them.
In general, the normal state resistance R extracted from the fit is smaller
than the one extracted from the dV/dI curves. The temperature fit is indeed
sensitive only to the SNS junction resistance, ignoring other resistances in
series, which are instead present in the dV/dI measurement.
In the case of a symmetric SQUID (which is mostly our case), where two
practically identical junctions are in parallel, the above expressions for a
single SNS junction are still valid, since the product RIc is exactly the same:
the current in each junction is half the injected current, but the resistance of
each junction is the double of the SQUID resistance.

Fig. 2.8 shows the temperature dependence of samples SQ-NbAu-L and
SQ-NbAu-S and their fits at low and high temperature.
We proceed in the following way: first, the high temperature dependence is
fitted, to find R and ETh. Then the low temperature expression is traced for
the values of R and ETh previously determined and with b fixed by the ratio
∆/ETh. Finally, a is adjusted to obtain a good overlap with the high temper-
ature fit. The values of a never differ more than 10% from the ∆/ETh →∞
case.
The complete fit at high temperature (eq. 2.4) is moreover compared to the
high temperature expression (eq. 2.5) for the same values of R and ETh in
the limit of an infinite long junction (∆/ETh → ∞). Even for sample SQ-
NbAu-L, for which ∆/ETh = 318, the approximation ∆/ETh → ∞ is not
satisfactory. For all our samples it is then necessary to use the expression for
a finite ∆/ETh. The error in the value of ETh coming from the approximation
∆/ETh →∞ is 6% for sample SQ-NbAu-L and 15% for sample SQ-NbAu-S.
We can see in Fig. 2.8 that while the high temperature fit is very good,
the measured critical current at low temperatures is too small by roughly a
factor 1.5. The deviations from the theory appear below T = 150mK for
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sample SQ-NbAu-L, and below T = 400mK for sample SQ-NbAu-S.
One possible explanation is that at the lowest temperatures the electronic
temperature is higher than the phonon temperature of the mixing chamber;
but this seems improbable at temperatures above 100 mK. Indeed, when in
the normal state, the junction dissipates a Joule power of the order of 10 nW,
which is of the order of the dilution fridge cooling power. However, before
each switch, the junction spend a long time (t ∼ 200 s) in the superconduct-
ing, non-dissipative state, and the electronic temperature should then have
the time to decrease to the bath temperature.
Another possible explanation involves the role of nonperfect transparency of
the superconducting/normal SN interface. This has been investigated by J.
C. Hammer et al. [28]. Numerical integration of the Usadel equations shows

Figure 2.8: Critical current vs. temperature for samples SQ-NbAu-L (red
dots) and SQ-NbAu-S (pink dots). The high temperature fits (blue lines) are
valid for T > 0.66K (SQ-NbAu-S) and T > 0.25K (SQ-NbAu-L). The low
temperature fits (green lines) are valid for T < 0.33K (SQ-NbAu-S) and
T < 0.13K (SQ-NbAu-L). Both take into account the finite ratio ∆/ETh.
Notice that the fits continue to be valid well outside their limits. Light blue
lines: high temperature approximation for ∆/ETh → ∞, using the R and
ETh found in the complete fit.
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that the main effect of a nontransparent interface is to renormalize the Thou-
less energy and to decrease the critical current. At the lowest temperatures,
a non-ideal interface decreases the amplitude of the critical current, but also
the temperature range of the current saturation: thus, an imperfect interface
cannot explain the saturation region we observe.
We are still looking for a good explanation of this discrepancy between the
experimental the theoretical low temperature behavior.

Figure 2.9: Critical current Ic and retrapping current Ir vs. temperature for
samples SQ-NbAu-L (Ic: red dots, Ir: blue dots) and SQ-NbAu-S (Ic: pink
dots and Ir: light blue dots). At T > 1K, one can observe Ir < Ic. This
is due to an artefact of the measurement technique, Ic, Ir and the current
measurement step ∆ I being of the same order of magnitude.

Samples SQ-NbAu retrapping current vs temperature is shown in Fig.
2.9, compared to the critical current.
The retrapping current temperature dependence is strikingly different from
the Ic(T ) curve: Ir is constant over a large range of temperature (up to
T = 0.76K for SQ-NbAu-S and up to T = 0.45K for SQ-NbAu-L), then
decreases slowly up to a point (T = 1K for SQ-NbAu-S and T = 0.51K for
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SQ-NbAu-L), where the hysteresis disappears and Ir becomes equal to Ic.
We find the same qualitative dependence in all our samples. In next section,
we try to explain the value of the constant retrapping current and the tem-
perature at which the hysteresis disappears in the context of the Resistive
and Capacitive Shunted Junction (RCSJ) model.

2.4 Hysteresis in V(I) curves

In this section we examine the possible causes of the hysteretic V(I) curves
we have seen in the previous sections. In particular, we compare the predic-
tions of different models to the experimental hysteresis and its temperature
dependence.

2.4.1 RCSJ model

The Resistive and Capacitive Shunted Junction (RCSJ) model is, because
of its simplicity and efficiency, the most popular model used to describe the
static and dynamic properties of SIS junctions [56].
Its main idea is to represent schematically a SIS junction as the sum of three
circuit elements in parallel: a resistance R, a capacitance C and a non-linear
inductance, which is the Josephson junction itself.
The resistance R corresponds to the total resistance shunting the junction;
in a SIS junction at low temperature, the appropriate R is the quasiparticle
resistance, while in the case of a SNS junction, the normal state resistance
is thought to predominate [56].
In a SIS junction, C is the capacitance formed by the two electrodes and the
insulating layer; in the case of a SNS junction, the capacitance is negligible,
but an effective capacitance can be defined, so that the main results of the
RCSJ model not only apply to SIS junctions but also to SNS junctions.
The bias current Idc is the sum of the currents flowing into these three ele-
ments:

Idc = Is + IR + IC = Ic sin δ +
V

R
+ C

∂V

∂t
(2.6)

Using the second Josephson relation

V =
Φ0

2π
δ̇ (2.7)

we can write eq. 2.6 as a function of the phase difference δ across the junction:

Idc = Ic sin δ +
1

R

Φ0

2π
δ̇ + C

Φ0

2π
δ̈ (2.8)
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By expressing eq. 2.8 in dimensionless units we can evidence the parame-
ters that determine the phase dynamics: the quality factor and the plasma
frequency. The dimensionless equation is:

Idc
Ic

= δ̈ +
1

Q
δ̇ + sin δ (2.9)

where the quality factor Q is given by:

Q = RC ωp (2.10)

and where δ̇ = ∂δ/∂τ :

δ̇ =
∂δ

∂τ
, τ = ωpt and ωp =

√
2πIc
Φ0C

(2.11)

We can also re-write eq.2.8 in the form of a motion equation:

C

(
Φ0

2π

)2

δ̈ +
1

R

(
Φ0

2π

)2

δ̇ +
∂U(δ)

∂δ
= 0 (2.12)

with

U(δ) = −EJ
(

cos δ +
Idc
Ic
δ

)
EJ =

Φ0 Ic
2π

(2.13)

where U(δ) is the potential in which the phase evolves and EJ is the Joseph-
son energy.
Equation eq. 2.12 describes the motion of a particle of position δ and of mass
proportional to C, submitted to a friction force proportional to 1/R, in the
washboard potential U(δ) whose slope is determined by the current Idc (see
Fig. 2.10).

When the particle is in the potential pit, the phase is well defined and
oscillates around the minimum at the frequency:

ω = ωp

(
1− I2

dc

I2
c

)1/4

(2.14)

While the phase is trapped, we have < δ̇ >= 0, which gives < V >= 0: we
are in the superconducting state.
When increasing the bias current, the potential tilts, lowering the barrier:
the particle has more and more probability to escape the potential pit. We
can then distinguish two behaviors, depending on the value of the quality
factor Q.



30 DC properties

• Q > 1, underdamped junction. In this case the friction is small: the
particle that has escaped the potential pit accelerates down and gains
enough kinetic energy not to be trapped again. When decreasing Idc,
the particle slows down, but because of its kinetic energy, it stops in a
potential minimum only for a current Idc = Ir < Ic. The V(I) curve is
then hysteretic, and the hysteresis is controlled by the value of Q:

Q = RC ωp =
4

π

Ic
Ir

(2.15)

• Q < 1, overdamped junction. In this case the friction is important:
the particle that has escaped the potential pit is slowed down by the
friction and is trapped in the following potential minimum; its motion
is similar to a Brownian motion. When decreasing Idc, the particle is
retrapped at Idc = Ic. The V(I) curve is then non-hysteretic.
If Q << 1 (for example in the case of a very small capacitance), the
differential equation becomes:

Idc = Ic sin δ +
1

R

Φ0

2π
δ̇ (2.16)

Integrating this differential equation to obtain δ(Idc), and thus V (Idc),
one finds:

V = R
√
I2
dc − I2

c (2.17)

Figure 2.10: Washboard potential describing the motion of the phase position.
Inset: circuit schematics of a SIS junction in the RCSJ model
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This is exactly the voltage-current dependence we measure at T =
1.3K in SQ-NbAu-S (see fit in Fig. 2.6 b)). At high temperature,
then, our junction behaves exactly as an overdamped SIS junction.

2.4.2 Hysteresis: heating

Let’s now examine the low temperature hysteresis of the V(I) curves.
A first possible source of hysteresis is of thermal origin [21].
We suppose that our junction is intrinsically non-hysteretic: then Ir = Ic.
But, if the electronic temperatures are different in the superconducting state
(S) and in the normal state (N), the switching currents are different when
passing from S to N (Ic(T

S)) and from N to S (Ir = Ic(T
N)). Ic depends

indeed strongly on T .
When the sample is in the superconducting state, because of its zero resis-
tance, the injected power doesn’t heat the normal wire. But, as soon as the
junction is resistive, the sample dissipates a power PJ = RI2 and its elec-
tronic temperature increases.
Because of the superconducting gap of the contacts, electrons with E < ∆
cannot enter the contacts. Moreover, since the normal wire resistance is small
(R ∼ 1Ω), the voltage across the junction is also small V ∼ 10−4V << ∆, and
an electron would need at least 10 incoherent reflections (MAR) to escape
the superconducting gap. Therefore, electrons are confined in the normal
wire and relax their energy by phonon emission.
At high temperature, phonon cooling is very efficient, so that the electronic
temperature Te and the phonon temperature Tph always coincide, and Ir = Ic.
At low temperature, instead, the cooling is poor, TNe is greater than Tph and
doesn’t vary much when Tph varies; we then have Ir < Ic, with Ir almost
independent on Tph. This qualitatively corresponds to our measurements.

Let’s now look if the agreement is also quantitative. The standard phonon
cooling power is:

P = ΣV (T 5
e − T 5

ph) (2.18)

where V is the volume of the normal wire and Σ a material dependent pa-
rameter.
At every bias current, the equilibrium between the injected power and the
phonon cooling power sets the electronic temperature. As soon as the bias
current is smaller than the critical current at that electronic temperature,
the junction switches into the superconducting state. This means:

RI2
c (Te) = ΣV (T 5

e − T 5
ph) (2.19)
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We have graphically solved this equation, using the measured Ic(T ) curve,
to find the retrapping current Ir = Ic(Te) at various bath temperatures (we
assume that Tbath = Tph). For SQUID samples, we have taken Ic/2 as the
single junction critical current, and 2R as the single junction resistance. Our
junctions are not completely symmetric in reality, but the error is negligible
(see sec.2.7.1).
The comparison between the calculated Ir(T ) and the experimental one is
shown in Fig. 2.11 for sample SQ-NbAu-S.
One can see that the standard value Σ = 210−9W µm−3K−5 yields a heating

Figure 2.11: Critical and retrapping currents of sample SQ-NbAu-S (red
lines). T 5 power law: Ir(T ) for Σ = 2 10−9W µm−3K−5 (green butterflies)
and for Σ = 5.3 10−8W µm−3K−5 (blue squares). T 6 power law: Ir(T ) for
Σ′ = 5.5 10−8W µm−3K−6 (yellow dots).

effect which is too large to account for the experimental results: we obtain
half the experimental Ir, even if the constant dependence on temperature is
well explained.
To reproduce the amplitude of Ir, we have at first tried to increase the value
of Σ, to see if a reasonable change could account for the measured curve. A
good agreement is found for Σ = 5.3 10−8W µm−3K−5 (Fig. 2.11). However,
this value is 20 times larger that the ones found in literature.
In a second attempt we considered not a fifth power law but a sixth power
law for the phonon cooling.
A sixth power law has been first predicted by A. Schmid, and then by A.
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sample T 5 : Σ(W µm−3K−5) T 6 : Σ′(W µm−3K−6)

SQ-NbAu-S 5.3 10−8 5.5 10−8

SQ-NbAu-L 2.5 10−8 5.3 10−8

WAu-Sq 1.15 10−8 1.98 10−8

Table 2.3: Best fits of the Ir(T ) curves for a phonon cooling power propor-
tional to T 5

e or to T 6
e .

Sergeev and V. Mitin [52] , and has been measured for 57 nm thick Au wires,
and for Cu wires thinner than 140nm by Karvonen et al. [33]. The new
equation to solve is then:

RI2
c (Te) = Σ′V (T 6

e − T 6
ph) (2.20)

We could fit our Ir(T ) curve using Σ′ = 5.5 10−8W µm−3K−6 (Fig. 2.11).
This Σ′ value is in good agreement with the one found by Karvonen et al.,
Σ′ = 6 10−8W µm−3K−5.
We report in table 2.3 the best fitting values of Σ for both power laws and
for the samples where we can observe an hysteresis over a large temperature
range. In all those samples, we didn’t find much differences between the fits
for a T 5 or a T 6 power law, but only the value of Σ′ for the sixth power
dependence is consistent with previous measurements.
In conclusion, the heating hypothesis works quite well, if we accept a sixth
power law for the phonon cooling and a coefficient Σ′ ∼ 5 10−8W µm−3K−6.
It is however not clear why measurements of a sixth power law are so rare
in standard normal metal films, (the power law observed is normally slower
than T 5 [49] [61]) and what consequently is the peculiarity of our samples.
In the following sections, we then examine other possible causes of hysteresis.

2.4.3 Hysteresis: phase dynamics
characteristic time τD

As we have seen in sec. 2.4, SIS junctions present hysteretic V(I) character-
istics, due to their phase dynamics.
We then wondered if a similar mechanism could also explain the hysteretic
V(I) curves of SNS junctions.
The parallel between SIS and SNS junctions, however, is not straightforward,
since the geometrical capacitance of a SNS junction is very small (roughly
10−16 fF ) and the corresponding Q would be much smaller than one. We
then expect to be in the overdamped regime, where the V (I) curve is smooth
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and non-hysteretic. Instead we observe sharp hysteretic transitions.
Y. Song [54] showed that a large hysteresis in superconducting weak links
can be explained by the phase dynamics when replacing the relaxation time
RC of a SIS junction with an effective relaxation time, given by ~/∆.
J. Warlaumont and R.A. Buhrman [59] used the approach of Y. Song to
explain the hysteresis in SNS junctions. They found the effective relaxation
time to be the Ginzburg-Landau time, proportinal to the diffusion time.
Following the suggestion of Ryazanov, we decided to try this approach for
our long SNS junctions. But what should replace the RC relaxation time?
At first, we consider like [59] that the characteristic time in SNS junctions is
the diffusion time τD. We take, like M. Tinkham, as characteristic resistance
the normal state resistance R. We then define an effective capacitance Ceff
such as RCeff = τD.
The plasma frequency and the quality factor become:

ωp(T ) =

√
2 e Ic(T )

~Ceff
=

√
2b

τD

√
Ic(T )

Ic(0)
(2.21)

Q(T ) =
√

2b

√
Ic(T )

Ic(0)
(2.22)

where

eR Ic(0) = bETh (2.23)

Typical values for Q and Ceff are Q ∼ 4 and Ceff ∼ 10 pF .
Since the quality factor determines the hysteresis (see eq.2.15), the retrapping
current is given by:

Ir(T ) =
4

π

√
Ic(0)

2b

√
Ic(T ) (2.24)

The expected retrapping current for sample SQ-NbAu-S is shown in Fig.
2.12 (blue squares). We used b = 10, which is the coefficient expected from
the ratio ∆/ETh, also used in the low temperature fit of Ic(T ). The agreement
in the Ir(T ) temperature dependence is not very good, even if the order of
magnitude is well reproduced.
One could argue that the low temperature expression of Ic(T ) already didn’t
fit our data at the lowest temperatures, and that maybe the b coefficient we
used is for some reason wrong.
But since we can see the saturation region in our experimental data, we
know the value of Ic(0) and we can directly measure the b coefficient; we find
b = 6.67. The retrapping current dependence on temperature for this b is
shown in Fig. 2.12. We find a little improvement at the highest temperatures,
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but the general agreement is worse than with b = 10.
Of course, one could have expected from the start a failure of this simple
model, since it is quite difficult to find a temperature independent Ir starting
from the relation Ir ∝

√
Ic(T ) and knowing that Ic(T ) is exponential in T!

However,it is noteworthy that this model predicted roughly the right order
of magnitude of Ir.

2.4.4 Hysteresis: phase dynamics
characteristic times: τe−ph and τD

A second attempt to attribute the hysteresis to the phase dynamics was mo-
tivated by an observation we made on long SNS Nb-Al samples, where the
normal part is an Al wire measured at T > Tc (see chap. 3).
When exciting those junctions at low frequency, we see an important change
in their V(I) curves for f > fr, where fr is related to the electron-phonon
rate of the Al (we find τ−1

e−ph = 1.9 107 T 3 s−1K−3).
We numerically solved the RCSJ model for quality factors Q between 1 and
10 (of the same order of magnitude of our experimental Ic/Ir) and in pres-
ence of an ac current (see sec.3.6.1).

Figure 2.12: Critical and retrapping currents of sample SQ-NbAu-S (red
lines) and expected retrapping current when assuming the hysteresis given
by the phase dynamics and the typical relaxation time given by τD.
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We observed in the calculated V(I) the same effect seen in the experiments,
but this time at a characteristic frequency 2π fr = 1/RC.
This correspondence between simulations and experiments suggests a paral-
lel between the RC relaxation time and the electron-phonon time.

Let’s now suppose that the phase dynamics controls the behavior of long
SNS junctions. We then define an effective RCSJ model, where the two
characteristic times RC and ω−1

p are replaced by their equivalent in the SNS
junction:

• The relaxation time RC corresponds to the inelastic relaxation time,
the electron-phonon time τe−ph at T > 1K

• What should correspond to the plasma frequency?

To answer this question, we trace the effective plasma frequency ω′p for the
Nb-Al samples:

ωp =
Q

RC
←→ ω′p =

4
π
Ic
Ir

τe−ph
(2.25)

We find in the two different Nb-Al samples that ω′p is practically constant,
its relative variation being about ∼ 10% (see table 2.4).
The effective plasma frequency could then correspond to a temperature in-
dependent characteristic time in SNS junctions. The more natural guess is
the diffusion time τD.
The ω′p for the Nb-Al samples seems indeed proportional to the Thouless

energy ~/τD : ω′p ∼ 0.01 τ−1
D .

Contradicting this guess is the fact that the ratio between the ω′p in the two
samples is not proportional to (LL/LS)2 as expected. However, this could
depend on these particular samples: the frequency fc, which controls the
high frequency behavior of the Nb-Al samples, and which is proportional to
the Thouless energy (see chap.3), behaves in the same way.
In conclusion, the effective plasma frequency ω′p could indeed be proportional
to the diffusion rate.

We have then found two possible replacements for the time scales RC
and 1/ωp. Let’s now see if they give reasonable prediction for the hysteresis
in the other samples.
In general, we have three independent ingredients to introduce in the RCSJ
model: Ic(T ), RC and ωp. For the Nb-Al samples we measure, at high
temperature, Ic(T ), Ir(T ) and τe−ph:

• Ic(T ) ←→ Ic(T )
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• RC ←→ 1/fr = τe−ph(T )

• ωp(T ) ←→ 4
π
Ic(T )
Ir(T )

τ−1
e−ph → 0.01 τ−1

D

In the Nb-Au, W-Au and Al-Au samples, however, we don’t access di-
rectly the inelastic rate τin. We start then from the assumption that the
plasma frequency is indeed related to the Thouless energy. The correspon-
dence between the RCSJ parameters and the experimental quantities is:

• Ic(T ) ←→ Ic(T )

• ωp ←→ α τ−1
D

• RC ←→ τin = 4
π
Ic(T )
Ir(T )

τD
α

where we take α = 0.01, like in the case of the Nb-Al samples.

To control the validity of these assumptions we can look at the effective
RC time. We expect a time whose amplitude and temperature dependence
are coherent with the inelastic time in Au.
Fig. 2.13 shows the effective RC time of sample SQ-NbAu-S, deduced from
the diffusion rate and the experimental Ic(T ) and Ir(T ) curves, in the tem-
perature region 40mK < T < 1K, where the hysteresis is present. Note that
these temperatures are much lower than in the case of the Nb-Al samples
(1.5K < T < 4K).

At the highest temperatures the curve follows the power law 1/(A T x),
while at the lowest temperatures it saturates. The A and x coefficients for
some samples are reported in table 2.5.
The electron-phonon rate expected for a moderate disordered thin Au wire

is:
τ−1
e−ph ∼ 2 108 T 3 (2.26)

sample τ−1
D ω′p ω′p,S/ω

′
p,L L2

L/L
2
S fc,S/fc,L

NbAl-S 29 GHz 280-310 MHz 2.7 - 3.3 3.8 2.43

NbAl-L 8.2 GHz 92-102 MHz

Table 2.4: Comparison between the diffusion rate of samples Nb-Al and the
effective plasma frequency ω′p. The ratio between the effective plasma frequen-
cies of the short sample NbAl-S, ω′p,S, and the long sample NbAl-L, ω′p,L, is
also compared to the square of the normal length ratio and to the frequency
fc ratio.
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sample A (s−1K−x) x

SQ-NbAu-S 1.28 108 1.51

SQ-NbAu-L 1.38 108 1.6

WAu-Sq 1.25 108 1.5

Table 2.5: Coefficients of the power law 1/(A T x) fitting the high temperature
dependence of the effective time RC, corresponding to the electron-phonon
time.

In a proximity superconducting structure, the electron-phonon rate, mea-
sured by Minghao Shen for a SNS junction with a disordered Au normal
wire 12nm thick, 10µm long and 0.5µm wide, is:

τ−1
e−ph = 1.1 107 T 2 (2.27)

The relaxation rate we find is even slower than the one measured by Minghao
Shen [53]. However, we are here at low temperature, and in particular at
T < 1K, where the energy relaxation rate begins to be controlled by the
electron-electron scattering rate.

Figure 2.13: Effective RC time for sample SQ-NbAu-S calculated from Ic(T ),
Ir(T ) and ETh (red squares). Blue line: 1/(AT x) with A = 1.28 108 and
x = 1.51. Light blue line: 1/(AT x) with A = 108 and x = 1.
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The electron-electron time in a finite quasi-1D system is given by [6]:

τ−1
e−e ∼

T

g
(2.28)

where g is the adimensional conductance.
This gives an inelastic rate increasing linearly with the temperature (x=1)
and with A ∼ 10−7.
The relaxation time saturation for T < 300mK could be due to the magnetic
impurities in the normal wire. It has been shown by F. Pierre [45] that an
electron-electron interaction mediated by the magnetic impurities could lead
to an energy relaxation when the temperature is below T = 500mK in a
golden wire.

In conclusion, it is possible to interpret the hysteresis in SNS junctions
as the result of the phase dynamics. An effective RCSJ model can describe
our V(I) characteristic if we replace the plasma frequency ωp by α τ−1

D and
the relaxation time RC by, at T & 1K, the electron-phonon time and at
T . 1K, the inelastic time. At the lowest temperatures, the saturation
could be explained by a relaxation time, constant in temperature, given by
the magnetic impurities present in the Au wire.
Of course, this is at the moment only a possible interpretation, and even if
the time obtained is consisten with a relaxation time, our hypothesis should
be supported by more experiments to be confirmed.
However, this discussion highlights an important issue: what corresponds to
the phase relaxation time in a SNS junction? Is it an elastic, or inelastic
energy relaxation time? A charge relaxation time? A phase coherence time?
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2.5 Transition temperatures

Figure 2.14: Resistance vs Temperature while cooling: (a) samples SQ-NbAu-
S (blue line) and SQ-NbAu-L (red line); (b) samples WAu-Sq (green line)
and WAu-N (black line). Temperatures are only approximate above 4 K due
to poor calibration of the thermometer in this range (for example, the W
switches in the superconducting state around 4K, while we read a transition
of 5.5K).

We describe in this section the temperature transition towards the prox-
imity induced superconducting regime.
The resistance vs. temperature curves are shown in Fig. 2.14 (a) for samples
SQ-NbAu-L and SQ-NbAu-S and in Fig. 2.14 (b) for samples WAu-N and
WAu-Sq. There is no qualitative difference between the SQUIDs and the
wires behavior.
For all samples, when cooling, one can see two jumps in the R(T) curve. The
resistance of the junction decreases abruptly a first time, when passing be-
low the critical temperature of the superconducting contacts, then decreases
slowly down to a point where the proximity effect extends to the whole nor-
mal region, and the resistance drops to zero. This second transition is often
less abrupt than the one of the superconductor, and happens at a tempera-
ture strongly dependent on the normal wire length.

In a SIS junction, a supercurrent can flow through the junction only
if the thermal fluctuations of the phase are small enough [1]. This means
kBT . EJ = ~

2e
Ic(T ), where EJ is the Josephson energy.

As we have seen in sec. 2.4, EJ represents the height of the energy barrier
that traps the phase. If kBT > EJ , the phase fluctuates freely and is not
defined any more.
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sample L (µm) Texp(K) T2(K) T1(K)
SQ-NbAu-L 1.2 1.3 1.19 0.2
SQ-NbAu-S 0.75 3.7 3.7 0.52

WAu-N 1.55 0.22 0.5 0.164
WAu-Sq 1.2 1.1 2 0.25
AlAu-b 1.25 0.54 0.62 0.18
AlAu-c 1.3 0.5 0.56 0.14

Table 2.6: Temperature at which the normal part becomes proximity super-
conducting Texp compared to the predicted transition temperatures.

In a SNS junction, the Andreev pair coherence length is the minimum be-
tween the temperature coherence length LT and the phase coherence length
Lϕ. At low temperature, LT dominates. One could imagine that as soon
as the coherence extends to the whole normal part, the junction becomes
superconducting. This would correspond to a transition temperature T1 =
4ETh/kB. We see in table 2.6 that T1 is about from two to four times smaller
than the experimental transition temperature.

We can then try to apply, to our SNS junctions, the argument used above
for SIS junctions. The transition would then occur at a temperature T2 for
which kB T2 = EJ(T2).
The comparison between the transition temperatures observed Texp and the
temperature T2 calculated from the measured critical current, are shown in
table 2.6. The agreement is quite good, except for the WAu samples.
This discrepancy could be explained by an insufficient filtering during the
cooling: the external noise could have heated the sample, lowering the tran-
sition temperature (we had indeed at the beginning of the experiment unex-
pected low critical currents that we increased when achieving a better control
over the noise).

One should also note that in the experimental determination of the tran-
sition temperature, the role of the measurement current Imeas is important:
the junction becomes superconducting only if Imeas < Ic(T ).



42 DC properties

2.6 Fluctuations of the critical current

The critical current is a stochastic quantity, which means that the values at
which the junction switches from the superconducting state to the normal
state are characterised by a certain dispersion. This dispersion depends on
the possible ways the phase can escape the tilted washboard potential de-
scribed in section 2.4: at low temperature, quantum tunneling of the phase is
possible, while at high temperature the thermal fluctuations cause the phase
escape.
We measure the critical current histograms by repeatedly sweeping linearly
the current from a slightly negative value to I > Ic at a frequency of 65
Hz. We record the time at which a voltage appears across the junction, time
which is proportional to the switching current.
An example of the obtained asymmetric histograms is shown in Fig. 2.15.

Figure 2.15: Sample SQ-NbAu-L critical current histogram at T=17 mK, for
1000 counts and f = 65Hz.

We have measured the width of the hystograms ∆I at half height (when
fitting the hystogram with a gaussian probability, the half height width is a
good approximation of the standard deviation SD).
The relative width is ∆Ic/Ic < 1 10−3 for SQ-NbAu-S and δIc/Ic ∼ 5 10−3

for SQ-AlAu-a. These values are from 5 to 10 times smaller than the ones
measured by Dubos et al. [19] on long SNS Nb-Cu junctions at T ∼ 1.3K.
The temperature dependence of the histogram width is shown in Fig. 2.16

for sample SQ-NbAu-S and in Fig. 2.17 for sample SQ-AlAu-a.
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In sample SQ-NbAu-S, the SD is constant up to T=0.7 K, then jumps down
and slowly decreases; similarly, in sample SQ-AlAu-a, the SD decreases like
the critical current up to T=100 mK, then jumps down and remains nearly
constant.
We can compare our results to the histogram width dependence predicted
for an underdamped SIS junction within the RCSJ model [26].
At first, let’s calculate the escape rate Γ of the phase. For an under-
damped junction (Q >> 1), we have in the quantum tunneling regime

Figure 2.16: Sample SQ-NbAu-S (a) critical current vs temperature (left

scale) compared to SD vs. temperature (right scale); (b) 103SD/I
1/3
c vs.

temperature. The blue fit corresponds to 103SD/I
1/3
c = 12.35 + 18.37T 2/3.

Figure 2.17: Sample SQ-AlAu-a (a) critical current vs temperature (left scale)

compared to SD vs. temperature (right scale); (b) 103SD/I
1/3
c vs. tempera-

ture.
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(T < ~ωp/(2πkB)) the law:

ΓQ = 12
√

6π
ωp
2π

√
∆U

~ωp
e−7.2 ∆U/(~ωp) (2.29)

while in the thermal activated regime (T > ~ωp/(2πkB)), the escape rate is:

ΓT = a
ωp
2π

e−∆U/(kBT ) (2.30)

where a ∼ 1.
The barrier height ∆U and the plasma frequency are:

∆U =
4

3

IcΦ0

2π

(
1− I

Ic

)3/2

ωp =

√
2πIc
Φ0C

(
1− I2

I2
c

)1/4

(2.31)

These rates are related to the escape probability by:

P (I) =
Γ(I)

İ
e−

∫ I
0 Γ(I)/İdI (2.32)

One can then calculate the width of the critical current histogram, which in
the tunnel regime is:

∆Ic ∝ I3/5
c (2.33)

while in the thermal activation regime we find a width:

∆Ic ∝ I1/3
c (kBT )2/3 (2.34)

Fig. 2.16 and 2.17 (b) show the ratio ∆Ic/I
1/3
c as a function of temperature.

In sample SQ-NbAu-S, the ratio ∆Ic/I
1/3
c between T = 0.2K and T = 0.7K

agrees with the predicted the power law T 2/3, even if the best fit is linear in
temperature. For T < 0.2K, both Ic and ∆Ic are constant, so that the ratio
∆Ic/I

3/5
c is also constant, as it is expected in the quantum tunneling regime.

It is difficult to verify if we are indeed below T = ~ωp/(2π kB), because of
the uncertainty of the ωp definition in a SNS junction. We note however that
the temperature corresponds well to the Thouless energy. We cannot explain
the behavior for T > 0.7K.

In sample SQ-AlAu-a, a completely different behaviour is observed: the
ratio ∆Ic/I

1/3
c initially decreases linearly with the temperature, slightly faster

than the critical current, then, at T = 0.12K, it saturates.
We are still looking for a clear interpretation of our data.
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2.7 Magnetic field dependence

We study in this section the variations of the critical current in a perpendic-
ular magnetic field.
As for the conventional SIS dc SQUID, the SNS dc SQUID samples have a
periodically oscillating critical current, whose period corresponds to a flux
quantum Φ0 = h/(2e) through the loop area S, as shown in Figs. 2.19 and
2.21. For all our samples, the oscillation period corresponds exactly to Φ0/S,
where S is the ring surface measured in the SEM images.
The relative oscillation amplitude, defined by (Ic,max−Ic,min)/Ic,max, which is
100% in a symmetrical SQUID, varies in our samples from 46% to 87%. We
explain this imperfect modulation by considering the geometrical differences
between the two junctions in a model developed for SIS junctions.
There are, however, features of the field dependence that differ strongly from
the SIS case. For instance, the absence in nearly all our samples of the
Fraunhofer-like oscillations of Ic(H) at high field: the decay is monotonous
and practically Gaussian with a field scale of approximately one flux quan-
tum through the normal wire. We show that the aspect ratio L/w controls
the high field behavior of the critical current.

2.7.1 Low field behavior

We now focus on the SQUID interference patterns, that causes the oscilla-
tions with a period Φ0/S.
We can explain every feature of our curves by using a model developed by
C. D. Tesche, V. Lefevre-Seguin and F. Balestro [55] [38] [4] for a SIS dc
SQUID.
Let’s start by analysing what happens to an ideal SIS dc SQUID in a per-

pendicular magnetic field (see Fig. 2.18 for a sketch).
The phase differences across the two junctions are: δ1 = ϕ1,dn − ϕ1,up and
δ2 = ϕ2,up − ϕ2,dn.
When we apply a magnetic flux, a screening current is flows into the ring,
and the phase differences across the junctions 1 and 2 changes, according to
the formula:

δ1 + δ2 = 2π
Φ

Φ0

(2.35)
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The currents in each junction are then:

is1 = is − i1 = ic1 sin δ1 (2.36)

is2 = is + i2 = ic2 sin δ2 = −ic2 sin

(
δ1 − 2π

Φ

Φ0

)
(2.37)

The total current in the SQUID is:

I = i1 + i2 = −ic1 sin(δ1)− ic2 sin

(
δ1 − 2π

Φ

Φ0

)
(2.38)

and the critical current Ic is its maximum:

Ic =
√

(ic1 − ic2)2 + 4 ic1 ic2 cos2(πΦ/Φ0) (2.39)

This simple analysis applies well to the field dependence of sample SQ-AlAu-
c: just taking into account the asymmetry in critical current of the two
junctions (respectively ic1 = 2.121µA and ic2 = 2.684µA), we obtain a very
good agreement (see Fig. 2.19).
In general, for SQ-AlAu samples, the increase of the minimal critical current

(the non perfect modulation), is mainly due to the asymmetry in critical
current. This asymmetry is easy to explain, since little differences in the
geometry of the normal wires give large differences in the critical current,

Figure 2.18: Scheme of a dc SQUID. I is the bias current, splitted in the two
branches in i1 and i2, ϕ1,up and ϕ1,dn are the superconducting phase before
and after the Josephson junction, Φ is the magnetic flux in the ring and is
is the supercurrent screening the flux.
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Figure 2.19: Critical current vs normalised flux Φ/Φ0 for sample SQ-AlAu-c.
The fit takes into account the asymmetry in critical currents described in eq.
2.39, with ic1 = 2.121µA and ic2 = 2.684µA.

which scales like 1/L3.
For other samples such as SQ-NbAu, instead, we cannot obtain a satisfactory
fit even when considering asymmetric critical currents.
This disagreement can be due to a finite SQUID inductance: the applied flux
is screened by the inductances L1 and L2 of the two branches of the ring by
δΦ = L1is1 + L2is2.
In symmetric SQUIDs with L1 = L2 = L and ic1 = ic2 = ic, the screening
flux is:

δΦ = L ic (sin(δ1) + sin(δ2)) = L ic (sin(δ1)− sin(δ1 − 2πΦ/Φ0)) (2.40)

We can see that the two contributions cancel each other when the flux im-
posed in the ring is a multiple of Φ0, while for a multiple of Φ0/2 the flux
screening is maximal. At Φ0 we don’t expect any effects on the maximum
critical current, while around Φ0/2, we expect the most important change.
In asymmetric SQUIDs, instead, the whole Ic(Φ) curve is modified.
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Figure 2.20: Numerical simulations to understand the tilting and scaling of
our Ic(Φ/Φ0) curves. The critical current of the SQUID is Ic = 70µA. (a)
Effects of a global inductance: α = δ = 0, L = 0, L = 6pH, L = 12pH; (b)
effects of an inductance asymmetry: α = 0, L = 6pH, δ = −0.3, δ = 0 and
δ = 0.3; (c) effects of a critical current asymmetry: δ = 0, L = 6pH, α = 0,
α = 0.3 and α = 0.5

We show in Fig. 2.20 how a finite inductance L, an asymmetry in inductance
δ = (L2−L1)/L, and an asymmetry in critical current α = (ic2−ic1)/(ic2+ic1)
modify the simple Ic(H) dependence of a SIS dc SQUID. For these numerical
simulations we follow the analysis of C. D. Tesche, V. Lefevre-Seguin and F.
Balestro [55] [38] [4] for a SIS dc SQUID. We can see that the effect of a
global inductance, just like the effect of an asymmetry in critical current, is
to increase the minimal value of Ic, reducing the modulation amplitude; this
effect is maximum around the odd multiples of Φ0/2.
When an inductance asymmetry is present, the maximum and the minimum
of Ic don’t change but their position in flux do. The change is maximum
near the multiples of Φ0.
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Finally, a critical current asymmetry in an inductive SQUID changes the
minimum of Ic, and shifts both its maximum and minimum (see Fig. 2.20).
In Fig. 2.21 we show the field dependence of sample SQ-NbAu-L, fitted by

Figure 2.21: Critical current vs. magnetic field for sample SQ-NbAu-L. Pink
line: symmetric SQUID with ic1 = ic2 = 34.5µA. Green line: fit for a critical
current asymmetry given by ic1 = 47.5µA and ic2 = 21.5µA. Red line: fit
for a symmetric SQUID (ic1 = ic2 = 34.5µA) with an inductance L = 6pH;
a slight deviation in the minima position is still visible, probably due to an
inductance asymmetry.

the Ic(H) curve of a symmetric SQUID with a global inductance L = 6pH.
This self inductance corresponds well to the value deduced from the perime-
ter of the ring, using the conversion 1nH ⇔ 1mm. The slight shift of the
minimum critical current between the data and the fit is probably due to an
inductance asymmetry (see Fig. 2.20).
It is easy to understand why we need to take into account the inductance
in the SQ-NbAu samples and not in all the SQ-AlAu ones: since the critical
current in the SQ-NbAu samples is more than ten times the one in the SQ-
AlAu samples, the flux screening is bigger.
The effects due to the inductance are important when 2πL Ic/Φ0 ∼ 1. At
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low temperature, for SQ-NbAu-L, we have:

2π
L Ic
Φ0

= 2π × 6pH × 70µA/ 2 10−15W ∼ 1.3 (2.41)

while for SQ-AlAu-c we have:

2π
L Ic
Φ0

= 2π × 10pH × 5µA/ 2 10−15W ∼ 0.15 (2.42)

In some cases, the inductance, coupled to a critical current asymmetry,
is clearly visible in the magnetic field dependence of the critical current.
As we just saw, the asymmetry and anharmonic distortion of the periodic
oscillations due to inductance effects are greater in the samples with the
largest critical current. Fig. 2.22 shows the Ic(H) curve of sample SQ-AlAu-
a, which, being the shortest of the Al-Au samples, is the one with the highest
critical current. In this sample, it is possible to see directly the tilting of the
Ic(H) curve due to the inductance.
Fig. 2.22 shows not only the critical current measured when increasing from
zero the bias current (Iupc ) but also when decreasing it from zero (Idnc ). One
could be surprised to find those two curves asymmetric with the bias current
(Iupc (H) 6= −Idnc (H)).
However, reversing the direction of the time means reversing not only the
direction of the current bias but also the direction of the field. We can then
see that the time-reversal symmetry still holds:

Iupc (H) = −Idnc (−H) (2.43)

One could also interpret the distortion in the SNS Ic(H) curve as an
intrinsic anharmonicity of the current-phase relation, not present in a SIS
Ic(H) curve: since the amplitude of the nth harmonic is predicted to vary as
1/n2 [30], our precision would be sufficient to detect at least the first three
harmonics.
However, it is possible to show that the critical current of a symmetric SNS
dc SQUID is insensitive to even harmonics so that the harmonic content of
the current-phase relation finally does not easily show up.
To calculate the critical current of a symmetric harmonic SQUID, with
current-phase relation I(δ) = Ic sin(δ), we maximise the current I (see eq.
2.38):

I = −ic
[

sin(δ1) + sin

(
δ1 − 2π

Φ

Φ0

)]
(2.44)
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The phases for which Ic is maximum are:

δ1,max =
π

2
+ π

Φ

Φ0

δ2,max =
π

2
− π Φ

Φ0

(2.45)

If now we consider an anharmonic current-phase relation, and if we suppose
that the maximum is still approximately at δ1,max and δ2,max, the second
harmonic is:

I2(δ1 = δ1,max) = −i2c [sin(2 δ1,max) + sin(2 δ2,max)]

= −2 i2c sin(π) cos(2π
Φ

Φ0

) = 0

Figure 2.22: Sample SQ-AlAu-a critical current vs. normalised flux in the
SQUID ring. Red dots: Ic measured increasing the bias current from zero
(up curve); black dots: Ic measured when decreasing the bias current from
zero (dn curve); blue dots: periodisation of the dn curve; blue circles: blue
period reflected around Φ = 0.0125Φ0 (a small trapped flux can explain the
shift of the zero).
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Similarly, we calculate the third harmonic:

I3(δ1 = δ1,max) = −i3c (sin(3 δ1,max) + sin(3 δ2,max))

= −2 i3c sin(3π/2) cos(3π
Φ

Φ0

)

= 2 i3c cos(3π
Φ

Φ0

) 6= 0

The critical current is then in the form:

Ic = 2
∑

inc

∣∣∣∣ cos

(
(2n+ 1)π

Φ

Φ0

)∣∣∣∣ (2.46)

We can then see that only odd harmonics modify the Ic(H) curve, making
it more difficult to reconstruct the whole current-phase relation. Therefore,
the best way to measure the various harmonics of the current phase relation
of long SNS junctions is to directly measure the magnetic orbital response of
a single junction SN ring, as was done by C. Strunk [25].

2.7.2 High field dependence

We consider now the dependence of the critical current at higher field scales,
i.e. we study the envelope of the oscillations of the dc SQUIDs.
We will see that the SNS junctions, in contrast with the SIS junctions, offer
the interesting possibility to explore a wide range of geometries, leading to a
large variety of field dependences.

Let’s start by considering the simple case of a large and thin SIS junction.
When applying a magnetic field on a SIS junction, the field penetrates not
only in the insulating layer but also in the superconducting contacts, over
a length λL, called the London penetration length. λL,d = λL

√
ξ/le is the

penetration length in the dirty limit, λL =
√

2m
µ0ns(2e)2

is the clean penetration

length, ξ =
√

~D
∆

is the superconducting coherence length and le is the elastic

mean free path.
Cooper pairs are then dephased over a length l = d+2λL,d (d is the thickness
of the insulating layer) when passing from a superconducting contact to the
other.
In a perpendicular magnetic field ~B = Bẑ, the vector potential is ~A = −Byx̂,
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and thus the field dependent phase shift is:

∆θ = 2π
2e

h

∫ d+λL,d

−λL,d
Axdx = 2π

2e

h
B l y = 2π

ΦJ(y)

Φ0

(2.47)

where ΦJ is the flux in the surface of the normal wire Sj = l w.
The current density at y is then:

j = jc sin

(
δ + 2π

ΦJ(y)

Φ0

)
(2.48)

The current in the junction is obtained by integrating in y over the width of
the junction and in z over the thickness of the junction. The critical current
is its maximum:

Ic = Ic(0)
Φ0

πΦJ

∣∣∣∣ sin(πΦJ

Φ0

)∣∣∣∣ (2.49)

which gives the Fraunhofer pattern shown in Fig. 2.24.
In a classical comparison, the Fraunhofer pattern corresponds to a diffraction
pattern through a slit of the junction size, created by the interference between

Figure 2.23: Schematic view of a SIS junction in presence of a perpendicular
magnetic field.
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the ballistic trajectories having different phases over the junction width. The
characteristic flux for this diffraction is Φ0/Sj.
The oscillations we have seen in the previous section are, on the other hand,
due to an interference phenomenon between the trajectories passing in the
two branches of the SQUID. The characteristic flux for this interference is
Φ0/S, where S is the surface of the ring hole.

Figure 2.24: Fraunhofer curve.

If we now consider SNS junctions, we are not limited any more by a ge-
ometry adapted to the tunneling of Cooper pairs. We then expect strong
differences between a large and thin or a long and narrow normal wire: in a
large and thin junction, the phase difference between the trajectories comes
from the phase distribution along the junction width, while in a narrow and
long junction, the travel in the normal metal gives the main contribution to
the dephasing.
Indeed, what we observe in Figg.2.25 and 2.26 for samples AlAu-a and
SQ-NbAu-S is very different from the Fraunhofer pattern seen in a two-
dimensional electron gas connected to Nb contacts [29] : Ic decreases with
the field as a Gaussian function and never oscillates.
The general fit for our samples is:

Ic(Φ/Φ0) = Ic(0) e−(Φ/Φ0)2/(2σ2) (2.50)
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where the parameter σ, roughly around one, is specified in Table 2.7 for
different samples.

Figure 2.25: Sample AlAu-a critical current vs normalised flux Φ/Φ0 =
H Sj/Φ0. The fit is a Gaussian function with σ = 0.735.
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Figure 2.26: Sample SQ-NbAu-S critical current vs. normalised flux Φ/Φ0 in
the surface junction. The fit is a Gaussian function with σ = 0.88. Unlike
SQ-NbAu-L (inset), and the other Al-Au samples, the Gaussian fit is here
worse at high fields.
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sample L/w L (µm) σ

SQ-NbAu-S 1.875 0.75 0.88

SQ-NbAu-L 3 1.2 0.75

SQ-AlAu-a 6.9 0.9 1.43

AlAu-a 7.2 0.9 0.735

SQ-AlAu-c 9.5 1.9 1.83

AlAu-b 10 1.25 1.07

SQ-AlAu-b 10 1.5 1.8

AlAu-c 10.4 1.3 0.92

Table 2.7: Comparison between the Gaussian standard deviation found in the
fits and the geometrical properties of the samples, normal wire length L and
aspect ratio L/w. No trend was found. The only deviation from a Gaussian
law was the high field behavior of sample SQ-NbAu-S (see Fig. 2.26), which
also has the smallest aspect ratio.

To explain this behavior, a semi-classical model was developed with the
help of G. Montambaux [41].
The aim is to model a long diffusive SNS junction, with w << L << Lφ, LT
(1D geometry), in presence of a perpendicular magnetic field ~B = −Bẑ.

We can choose the gauge to have a vector potential ~A = B y x̂. The current
density, supposing a harmonic current-phase relation, is then:

j = jc sin(δ + θi,j) (2.51)

δ is the phase difference between the two superconducting contacts, indepen-
dent of the position of i and j since in this long 1D geometry one can ignore
the dephasing along the junction width in comparison to the one along the
junction length.
θi,j is the phase taken along the trajectory starting at point i and finishing
at point j.
The current is the average over all possible trajectories Ci,j:

I ∝ Im

[
< ei(δ+θi,j) >Ci,j

]
(2.52)

Considering a reference trajectory 1-2 with a dephasing θa, we have θi,j =
θa + ∆θi,j (see Fig. 2.27)

I ∝ Im

[
ei(δ+θa) < ei∆θi,j >Ci,j

]
(2.53)
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Figure 2.27: Scheme of the 1D model developped by G. Montambaux.

The critical current is the maximum of the current I. The constant expo-
nential term has amplitude equal to one:

Ic ∝
∣∣∣∣ < ei∆θi,j >Ci,j

∣∣∣∣ (2.54)

Since there is a great number of possible trajectories, because of the central
limit theorem we can suppose that the distribution of the trajectories length
is gaussian. The phases θi,j of each trajectories follow then also a gaussian
distribution. We obtain:

Ic ∝
∣∣∣∣e−<(∆θi,j)

2>Ci,j /2

∣∣∣∣ (2.55)

where ∆θi,j = θi,j − θa is:

∆θi,j =
2e

~

[ ∫ j

i

Axdx−
∫ 2

1

Axdx

]
=

2e

~

∮
Axdx =

2π

Φ0

H Si,j = 2π
Φi,j

Φ0

(2.56)
Introducing eq. 2.56 in eq. 2.55, we find that the critical current decays as
a gaussian function:

Ic ∝
∣∣∣∣e− 2π2H2 α2/Φ2

0

∣∣∣∣ (2.57)

where
α2 =< S2

i,j >Ci,j (2.58)

has the same order of magnitude of the normal wire surface.
If the trajectories are ballistic, we have α2 = S2/3. This gives:

Ic ∝
∣∣∣∣e− (2π2/3) Φ2/Φ2

0

∣∣∣∣ (2.59)
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So that, in a rough approximation, we expect a gaussian decay with σ ∼ 0.3,
which is 3-4 times smaller than the observed values.
The exact calculation describing the diffusion of trajectories from point i to
point j gives however a slightly different distribution for the trajectories. The
final magnetic flux dependence is:

Ic = Ic(0)

π√
3

Φ
Φ0

sinh

(
π√
3

Φ
Φ0

) (2.60)

The difference between this distribution and a Gaussian one is shown in

Figure 2.28: Comparison between a Gaussian decay Ic(Φ/Φ0)/Ic(0) =
e−(Φ/Φ0)2/2 (blue line) and the semi-classical 1D model decay of eq.2.60 found
by G. Montambaux (red line).

Fig. 2.28. This model reproduces the shape of our Ic(H) curves, but the
predicted field decay is slower than in our experimental results.
This semi-classical 1D model is however interesting for its qualitative predic-
tion: the field dependence can strongly differ from a Fraunhofer pattern in a
long, 1D geometry.
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To study this influence of the geometry on the Ic(H) curve, we designed
two new samples with different aspect ratios: sample WAu-Sq, with aspect
ratio L/w=0.7, and sample WAu-N, with aspect ratio L/w=4.5.
We can see at first in Fig. 2.33 and Fig. 2.32 that our intuition about the
important role of the aspect ratio is good: the WAu-N sample shows a Gaus-
sian decay like the other measured samples, while WAu-Sq sample, which
has nearly a square geometry, shows oscillations which remind of a Fraun-
hofer pattern, even if with some differences (for example, the minima aren’t
exactly at multiples of a quantum flux).
J.C. Cuevas and F.S. Bergeret [13] have studied the influence of the aspect
ratio on the critical current field dependence for a long, diffusive, SNS junc-
tion.
They have solved the 2D Usadel equation for different normal wire lengths
and widths, at different temperatures, in the limit of high-resistance or low-
resistance interfaces. They supposed a complete field penetration in the
normal metal (w < λL,d), no Josephson currents screening, and the absence
of inelastic scattering.
In the low-resistance interfaces (which applies well to our case), they have
fixed the normal wire length in the limit of a long junction, and varied the
width of the junction; they have found two very different cases for w < L
and w > L. These two regimes are described below and represented in Fig.
2.29.

• w << L : in this 1D limit (w very small), the field acts as a pair-
breaking mechanism. It has the same effect than magnetic impurities,
which cause spin-flip scattering and thus reduce the critical current.
The critical current is then monotonically reduced: at T=0 we have
Ic(H)/Ic(0) ∼ e−0.145 ΓH/ETh , with ΓH = De2H2w2/(6~).

• w >> L In this case, the main effect of the field is to affect the phase,
which varies in the junction width. Linear arrays of proximity vortices
appear in the normal wire; these vortices have the same properties
than superconducting vortices, such as a normal core or a quantised
flux inside the vortex. Because of the phase modulation, an interfer-
ence pattern emerges, which is identical to a Fraunhofer pattern for a
small enough aspect ratio (L/w < 0.04).

The authors don’t suppose an harmonic current-phase relationship, but
calculate the complete, anharmonic I(δ) relation of a long SNS junction.
However, we see that the wide junction limit of SNS junctions corresponds
exactly to the Fraunhofer pattern of SIS junctions.
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J.C. Cuevas and F.S. Bergeret have then studied in detail the field depen-
dence of the critical current in the case w >> L, when the magnetic field only
changes the phase difference along the width of the junction. The expected
field dependence is then:

I(H, δ) =
∑
n

In
sin(nπΦ/Φ0)

nπΦ/Φ0

sin(nδ) (2.61)

The harmonics amplitude strongly depends on temperature; at T = 0 the
harmonic content is maximum, but we can see that even then the changes
from a Fraunhofer pattern are very small (Fig. 2.30). We can then conclude
that the high field dependence of the critical current is not appropriate to
detect the harmonic content of the current-phase relation. In fact, neither
the interference pattern of Ic(H) in a SQUID structure (see section 2.7.1) nor

Figure 2.29: Normalised critical current vs. normalised magnetic flux. The
numerical simulation was done for L = 8ξ, kBT = 0.01∆, perfect transparent
SN interfaces and an aspect ratio varying from L/w = 0.04 to L/w = 16.
[13]
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Figure 2.30: Normalised critical current vs. normalised magnetic flux. For
decreasing temperature, the harmonic content of the current-phase relation-
ship I(Φ) (see inset) increases, but the magnetic field dependence is nearly
unchanged from the Fraunhofer dependence of an sinusoidal I(Φ) (from F.S.
Bergeret and J.C. Cuevas, unpublished).

the diffraction pattern of Ic(H) in SQUIDs and wires, show visible effects of
the harmonic content.
As we see in next section, one possible way to access the harmonic content
of I(δ) is to study the fractional Shapiro steps.

To understand completely our experimental Ic(H), it is necessary to take
into account not only the aspect ratio of the normal wire, but also the self in-
ductance contribution, particularly important in the WAu-Sq sample (visible
in the central peak of the Ic(H) curve, which is tilted around its maximum).
Fig. 2.31 shows how a Fraunhofer pattern is modified in presence of a self
inductance (a) and when the aspect ratio passes from L/w < 0.04 (exact
Fraunhofer pattern) to L/w = 0.7 (aspect ratio of sample WAu-Sq).

To calculate the effect of the self inductance we have used a model valid
for a SIS junction in the case of a width w > λL [5]. When the field can’t
completely penetrate, Josephson screening currents circulate in the normal
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Figure 2.31: Normalised critical current vs. normalised magnetic flux. De-
viations from a Fraunhofer pattern (red line) for (a) an inductive junction
(blue line) and (b) a junction with aspect ratio L/w = 0.7 (green line).

part, and the total flux is the sum of the external flux Φe and the maximum
screening flux that the junction can provide, ΦL = b × Ic(Φe), where b =
1

4π
( w
λL

)2. The critical current is then:

Ic(Φe/Φ0)

Imax
=

sin(π(Φe/Φ0 + b I(Φe/Φ0)
Imax

))

π(Φe/Φ0 + b I(Φe/Φ0)
Imax

)
(2.62)

The b necessary to account for the inductance contribution in our data is
b = 0.4. This corresponds to a London penetration length of 0.86µm, large
for a classic superconductor but reasonable for a proximity superconductor,
where the density of pairs is smaller.

Fig. 2.32 shows the field dependence of WAu-Sq critical current: we can
see oscillations, just like a Fraunhofer curve, that we had never seen be-
fore. When comparing it with the numerical simulation for L/w = 0.7, we
find a good agreement in the position of the zeros for Hzero = Φ0/S, with
S = 3.45µm2. This, surprisingly, corresponds to the whole surface of the
square normal metal, independently on where the contacts are.
Apart from the minima position, does the simulation fit the shape of our
Ic(H)? It is difficult to see it, since the experimental curve has minima
which do not go to zero for the first four periods. We have then rescaled
the theoretical first period field dependence (light blue line), to make it cor-
respond to our data amplitude, and we can now see that the shape is well
reproduced. The amplitude of the next periods oscillations decreases however
slower than predicted; this could be due to a non uniform current distribu-
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tion in the normal metal [5].

The junction WAu-N has instead an aspect ratio of L/w = 4.5, big enough
to kill the diffraction pattern (see Fig. 2.29). We can see in Fig. 2.33 that,
indeed, all oscillations have disappeared, and that the Ic(H) curves is a Gaus-
sian function (red fit).
However, the field decay cannot be fitted by the numerical simulation for the
corresponding flux scale Φ/Φ0: we found a good fit only when decreasing the
numerical simulation flux by a factor 2.5.
This can be explained by a non-perfect interface [28], with an interface resis-
tance given roughly by Ri = 2RN (the ratio Ri/RN = 2 leads to a rescaling

Figure 2.32: Sample WAu-Sq normalised critical current vs. normalised flux.
Green line: theoretical expectation for a junction with aspect ratio L/w = 0.7
and inductance given by the dimensionless parameter b = 0.4. Light blue
line: theoretical curve scaled to fit the first period data amplitude. Inset:
global view of Ic(Φ/Φ0).
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Figure 2.33: Sample WAu-N normalised critical current vs. normalised flux.
Red line: Gaussian function e−(Φ/Φ0)2/2∗(0.5)2. Yellow line: numerical simu-
lation of the 2D Usadel equation, where the flux has been rescaled by a factor
2.5.

of the perfect interface flux by roughly a factor 2).
The origin of this non-perfect interface, may be attributed to the right W
contact, which is just at the extremity of the golden wire (see the SEM image
2.4).

2.7.3 Reentrance at low magnetic field

We have observed in certain samples a quite puzzling reentrance of the critical
current at low magnetic field (H < 45G) and low temperatures (T < 100mK
in sample SQ-AlAu-b).
The samples that present this reentrance are simple junctions or dc SQUIDs
(see Fig. 2.34 and 2.35). They were made on different wafers at different
moments and have all Al superconducting contacts. Their length varies from
1.25µm of sample AlAu-b to 1.5µm of sample SQ-AlAu-b.
The reentrance is reproducible and doesn’t depend on the measurement
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setup.
How to explain the field and temperature scales of the reentrance?
We have measured the temperature dependence of the reentrance only for
sample SQ-AlAu-b. We find that the reentrance disappear above T =
100mK. This temperature scale could be connected to the sample mini-
gap, ∆̃ = 93mK.
The reentrance disappears when increasing the magnetic field aboveH = 32G
(Φ = 0.36Φ0) for sample SQ-AlAu-b, above H = 43G (Φ = 0.33Φ0) for sam-
ple AlAu-b and above H = 37G (Φ = 0.3Φ0) for sample AlAu-c. The field
values are very similar, but since the surfaces of those three samples are also
very similar, one cannot distinguish if the magnetic field scale is independent
of the normal wire or on the contrary is determined by mesoscopic effects in
the normal part.

Figure 2.34: Critical current vs. normalised flux for sample AlAu-b (blue and
dark blue squares) and AlAu-c (red and orange squares). For both junctions
two different measurements are shown; in the case of sample AlAu-b, the
curves are shifted because of a temperature change.
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A possible explanation for the reentrance is the presence of magnetic
impurities, causing spin-flips breaking the phase coherence. The magnetic
field has two opposite effects on a superconductor: it breaks Andreev pairs,
decreasing Ic, but also tend to align the impurities magnetic moments, sup-
pressing the spin-flips and thus increasing Ic. This competition leads to an
increase of the critical current for H . 0.3 kB Tc/µB, above which the de-
pairing is predominant, and for temperatures below 0.4Tc [60].
The amplitude of the predicted reentrance ∆Ic/Ic is of the same order of
magnitude than our measurements. The temperature scale is also well re-
produced when replacing to the Tc of the superconductor the temperature
where the proximity superconductivity appears: 0.4Tc,N ∼ 120mK. There
are however two problems with this explanation: one is the predicted field
scale of the reentrance, H ∼ 2000G; the other, less determinant, is the fact
that samples evaporated at the same moment don’t present the same fea-
tures: why should one sample contain more impurities than the others?

A second hypothesis is that the reentrance is caused by a mesoscopic ef-

Figure 2.35: Critical current vs. normalised flux for sample SQ-AlAu-b. Red
line: Gaussian function Ic(Φ/Φ0) = 8.9e−(Φ/Φ0)2/(2∗(1.8)2).
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fect, similar to the weak localization correction to the conductance at low
fields.
The weak localization consists in the increase of the probability, at zero mag-
netic field, for an electron to reverse completely its momentum and come back
at its starting point.
In a metallic diffusive coherent wire, at zero field, nearly all interferences
are killed by an average over the disorder. Only survive the interferences
between time-reversed paths. Thanks to them, the probability to come back
at the starting point is twice the classical probability.
The presence of a magnetic field dephases these time-reversed trajectories,
and decreases progressively the probability for an electron to come back, thus
increasing the conductance.
The weak localisation characteristic field is H = Φ0,N/S, where Φ0,N = h/e
is the normal quantum flux and S is the surface perpendicular to the mag-
netic field. The characteristic change in conductance is ∆G = G0 × LΦ/L =
2e2/h× LΦ/L.
We can then compare the magnitude of the critical current decrease to that
of a weak localisation effect. Since at low temperature we are in a saturation
regime, we have RIc = const, and thus ∆Ic/Ic = ∆G/G = ∆GR.
Experimentally, we measure ∆Ic/Ic = 14.4% for sample AlAu-b, ∆Ic/Ic =
12.3% for sample AlAu-c and ∆Ic/Ic = 3.5% for sample SQ-AlAu-b, values
one or two order of magnitude larger than the expected ∆G/G ∼ 0.5%.
The magnetic field scales also don’t correspond: we measure values three
times smaller than the predicted Φ0/S.
In conclusion, we haven’t yet found a satisfactory theory explaining the reen-
trance, and further measurements would be necessary.
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2.8 Shapiro steps

We have measured sample WAu-Sq dc voltage vs. dc current characteristic
in presence of microwaves. The microwaves are emitted by an antenna (a
coaxial cable) situated just above the sample: the coupling sample-antenna
is then weak. In this situation one expects to see Shapiro steps, microwave
induced current plateaus for discrete values of the voltage across the junc-
tion.
In a tunnel Josephson junction, when a voltage V is present across the junc-
tion, the pairs at different sides of the barrier have an energy difference 2eV.
If we apply an external radiation of frequency ωrf/2π, the absorption of n
photons increases the pair tunneling current when:

V = n
~
2e
ωrf (2.63)

generating plateaus in the I(V) curve.
The amplitude of the Shapiro steps varies with the applied rf power, oscil-
lating like a Bessel function of order n for the nth step.
In a long SNS junction, Shapiro steps are also present at voltages such as
V = n ~

2e
ωrf . Their amplitude oscillates, like in a SIS junction, but with a

more complicated dependence ([5], sec. 3.7).
We show in Fig. 2.36 the differential resistance of sample WAu-Sq as a func-

tion of the applied current when irradiated with microwaves at a frequency
frf = 2.8GHz. The sharp decrease to zero of the resistance at I = −5µA
corresponds to the retrapping current Ir, while the sharp increase of the re-
sistance at I = 8.4µA corresponds to the critical current Ic.
When the normal wire is in the resistive state, negative peaks in resistance
appear periodically: they are the Shapiro steps.
Their width corresponds to the amplitude of the current plateaus formed in
the I(V) curve. We can see that the resistance doesn’t decrease to zero for
all Shapiro steps; this could be partly due to a insufficient number of points
in each peak (in the narrower peaks we have only 5-6 points).
When plotting the voltage as a function of the order n of the step, we expect
straight lines, with a slope proportional to the rf frequency. In Fig. 2.37
we show the expected dependences (lines) and the measured Shapiro steps.
Even if the agreement is not spectacular (especially for f=1.4 GHz and f=3.6
GHz), it is reasonably good.

We see in Fig. 2.37 that we not only detect the classical, integer Shapiro
steps, but also the fractional Shapiro steps at n=1/2, n=1/3, etc.
The position of the steps doesn’t vary with temperature or rf power. In Fig.
2.38, we show the resistance of the sample (colour scale) as a function of the
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rf power and the bias current.

In contrast to what has been observed by P. Dubos [19] [17] at high tem-
perature (T = 4K corresponding to 13ETh), at T ∼ 150mK ∼ 2.4ETh
we still see Shapiro steps with n > 1 at voltages greater than the Thouless
energy (for sample WAu-Sq ETh = 5.33µV ). Moreover, we still see Shapiro
steps for frequencies up to about three times the minigap (∆̃ = 4GHz).

Fractional Shapiro steps can be explained in the case of an anharmonic
current-phase relationship.
For example, the presence of a second harmonic in the current-phase rela-
tionship (I = Ic1 sin(ϕ) + Ic2 sin(2ϕ)) produces a step n = 1/2.
To demonstrate this statement, let’s consider that the microwaves generate
an alternative voltage across the junction:

V = V0 + Vω cos(ωt) (2.64)

Figure 2.36: Differential resistance vs. bias current when irradiating sample
WAu-Sq with a microwaves of frequency f=2.8 GHz, at T = 100mK. Shapiro
steps are clearly visible.
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The ac Josephson effect (2eV/~ = ϕ̇) yields:

ϕ = ϕ0 +
2eV0

~
t+

2eVω
~ω

sin(ωt) (2.65)

The considered current-phase relation then becomes:

I = Ic1 sin(ϕ0 + ωJt+ a sin(ωt)) + Ic2 sin(2ϕ0 + 2ωJt+ 2a sin(ωt)) (2.66)

where ωJ = 2eV0/~ and a = (2eVω)/(~ω). Developing with a Bessel-Fourier

Figure 2.37: Voltage across the junction vs. Shapiro steps order for sample
WAu-Sq. Dots: experimental points. Lines: expected linear dependence given
by V = n ~

2e
ω. The microwave frequencies f and powers P used are: f=11 GHz

(P=-15 dBm), f=8GHz (P=-4 dBm), f=5.5 GHz (P=-4 dBm), f=3.6 GHz
(P=-5dBm), f=2.8GHz (P=-5 dBm), f=1.4GHz (P=7dBm) and f=0.7GHz
(P=4dBm). The measurement temperature is T=100-250 mK. We see entire
Shapiro steps for n=1, n=2, n=3, and fractional Shapiro steps for n=1/5,
n=1/4, n=1/3, n=1/2, n=4/5, n=4/3, n=3/2. It is however difficult to
distinguish between n=1/4 and n=1/5.
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transform, we finally obtain:

I = Ic1
∑

(−1)nJn(a) sin(ϕ0+ωJt−nωt)+Ic2
∑

(−1)nJn(2a) sin(2ϕ0+2ωJt−nωt)
(2.67)

A dc current step appears if:

V0 =
~
2e
nω or V0 =

~
2e

n

2
ω (2.68)

We obtain then the Shapiro step n = 1/2 and all his multiples. One can
easily extend the discussion to a step n = 1/3 by adding a third harmonic in
the dc Josephson relationship. The step n = 0 is simply the critical current.
We can then relate the fractional Shapiro steps to anharmonicities in the
current-phase characteristic.
These anharmonicity can be due to coherent multiple Andreev reflexions
(when LT , LΦ >> L, one Andreev pair can cross coherently the normal wire
many times, each time adding an harmonic to I(δ)), or to non-equilibrium
phenomena (see chapter 4).

Figure 2.38: Sample WAu-Sq bias current vs rf power and differential resis-
tance (color scale: green, R=0, increasing resistance yellow and then red).
The temperature is T = 80mK. One can easily see the power dependence of
Ic, Ir and of the Shapiro steps.
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Figure 2.39: Dots: Shapiro steps current plateau amplitude vs. normalised
flux (right scale) with rf frequencies f=2.8 GHz (P=-5 dBm) and f=3.6 GHz
(P=-5 dBm). The Shapiro step order is indicated with a m (steps at I > Ic)
or a n (steps at I < Ic). Ic(Φ/Φ0) (red line, maximum on the rigth) and
Ir(Φ/Φ0) (green line, maximum on the left) are measured under the same
irradiation (left scale). One can see that half quantum flux is trapped in the
junction.
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If the fractional Shapiro steps are generated by coherent MAR, we expect
the harmonic content to follow [30]:

Icn = Ic (−1)n
1

(2n+ 1)(2n− 1)
(2.69)

The harmonics, and thus the fractional steps, should disappear faster than
the integer steps, in presence of any dephasing mechanism, such as temper-
ature or magnetic field.
We have then measured the dependence of our Shapiro steps on the mag-
netic field. We show it in Fig. 2.39 for the two rf frequencies f = 2.8GHz
and f = 3.6GHz, together with the critical and retrapping current depen-
dences. Since our sample has a non negligible inductance, the direction of the
magnetic field matters, and we shall compare the Shapiro steps for I < Ir,
labelled with the n letter, to the Ir(H) curve (in green), and the Shapiro
steps for I > Ic, labelled with the m letter, to the Ic(H) curve (in red).
Even if these experiments are only preliminary, it is clear that the magnetic
field dependence of the integer Shapiro steps is the same as the n = 0 step,
i.e. the critical or retrapping current.
Let’s now look at the fractional Shapiro steps. We have seen in the previous
section that the critical current dependence on field is practically the same
if the current-phase relation is harmonic or anharmonic. Shapiro steps, in-
stead, should permit to separate the contribution of the higher harmonics
one by one.
So, if there is a second harmonic in our I(δ), this second harmonic would
produce a n = 1/2 step, which, ignoring for the moment the self inductance
and aspect ratio contributions, behaves in magnetic field as

Ic2(Φ/Φ0) = Ic2,max

∣∣∣∣sin(2πΦ/Φ0)

2πΦ/Φ0

∣∣∣∣ (2.70)

This function is similar to a classical Fraunhofer function, but the position
of the zeros is at all multiples of Φ0/2 instead of Φ0 (see Fig. 2.40).
This is evidently not what we find experimentally, since the field dependence
of half integer steps seems to have an equal or greater period than the integer
steps.
Our discussion was based on a model without inductance and with an aspect
ratio L/w < 0.04. However, the self inductance doesn’t have any influence
on the zeros position, while a bigger aspect ratio could have increased the
position of the zeros, but not enough as to match the measurements.
It seems thus improbable that the half integer Shapiro steps we measure are

generated by a second harmonic due to the presence, at low temperatures,
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of multiple Andreev reflexions.
However, in a out-of-equilibrium situation, in which the response of the junc-
tion is not adiabatic, a second harmonic could be generated in the current-
phase relation, and an equibrium second harmonic could be modified (see
chap. 4). Further measurements, such as the fractional steps temperature
dependence, are then still necessary to understand and confirm the origin of
the measured half-integer Shapiro steps.

2.9 Conclusion

In this chapter we have examined the DC properties of long SNS junctions
and SNS DC SQUIDs. The superconducting contacts have been fabricated
with three different metals: Aluminum, Niobium and Tungsten, while the
normal part is a high purity golden wire. The Al-Au junctions were made
by standard double angle thermal evaporation, the Nb-Au junctions by the
etching of a Nb-Au bilayer, and the W-Au junctions by decomposition of a
vapour of tungsten hexacarbonyl with a gallium focused ion beam.
Despite the very different fabrication methods and resulting SN interfaces,

Figure 2.40: Fraunhofer pattern expected for n=1 Shapiro step (black line)
and for a n=1/2 Shapiro step (green line).



76 DC properties

the temperature and magnetic field dependences of the dc voltage-current
characteristic could be interpreted within the same framework.

2.9.1 Dc voltage-current characteristics

At low temperature, we observe in all our current-biased samples, hysteretic
sharp switches between the normal (N) and the superconducting (S) states.
The junction switches from S to N at the critical current Ic, while it switches
back from N to S at the retrapping current Ir < Ic; we find generally
Ir ∼ 0.15− 0.4 Ic.
At high temperature, the hysteresis disappears and the junction transition
between S to N is smooth.
We have examined different possible sources of the low temperature hys-
teretic behavior.
First, we have supposed a thermal origin. The junction, intrinsically non-
hysteretic, is heated in the normal state by the Joule dissipated power, and
is cooled by the phonons. If the Joule power is greater than the phonon cool-
ing power, the electronic temperature Te increases, and Ic decreases. The
junction then switches from N to S only at Ir = Ic(Te).
We have found a good agreement with the experiments when modeling the
phonon cooling power by Pph = Σ′ V (T 6

e−T 6
ph), where Σ′ ∼ 5 10−8W µm−3K−6,

V is the sample volume and Te and Tph are the electronic and phonon bath
temperatures.
We have then supposed an intrinsic hysteresis generated by the phase dy-
namics, as in a SIS junction.
In a SIS junction, hysteretic curves are predicted for underdamped junctions
with a quality factor greater than one: Q = τ ωp > 1. τ = RC is the relax-
ation time and ωp is the plasma frequency. To use the same model for a SNS
junction, we need to replace the RC and ω−1

p times with the corresponding
characteristic times in the SNS case. We use the parallel found in sec. 3.6.1:
RC ↔ τin, where τin is the inelastic time. Indeed, the time the phase needs
to lose its kinetic energy and be retrapped in a potential well could corre-
spond in a SNS junction to the time the electrons need to lose their kinetic
energy by inelastic scattering.
From the RCSJ relations Q = (4/π) (Ic/Ir) and Q = RC ωp = τin ω

′
p we

can deduce ω′p from the experimental Ic(T ), Ir(T ) and τin(T ) curves. The
effective plasma frequency we find is temperature independent and roughly
proportional to the diffusion rate τ−1

D .
To confirm these deductions, we assume ω′p ∝ τ−1

D , and we trace the effec-
tive RC time vs. temperature for the samples in which we don’t measure
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directly the inelastic time. If our assumptions are good, we should find the
temperature dependence of the electron-electron time for T . 1K, and of
the electron-phonon time for T & 1K.
We observe a saturation at low temperature, possibly due to the magnetic
impurities scattering, and at higher temperatures a rate decaying with tem-
perature as τ−1 ∼ 1.3 108 T 1.5 s−1K−1.5. These results are consistent with
the inelastic scattering rate predicted in a limited system.

2.9.2 Temperature dependence

At low temperature, we observe a saturation of the critical current Ic. At
high temperature, instead, Ic(T ) is exponentially suppressed on a tempera-
ture scale corresponding to the minigap induced in the normal metal by the
proximity effect.
We reproduce succesfully all our Ic(T ) dependences using the analytical ex-
pressions obtained by P. Dubos by fitting the numerical calculation of the
Usadel equation.
The only deviation from the theory is the low temperature regime, where
we observe a saturation region wider than expected, and at a lower critical
current. We have not found a satisfying explanation for this behavior.

2.9.3 Magnetic field dependence

We have measured the critical current dependence on a perperndicular mag-
netic field.
In the dc SQUIDs, we observe two magnetic field scales, corresponding to a
quantum flux in the surface of the ring Φ0/S and to a quantum flux in the
surface of the junction normal wire Φ0/Sj.
At low fields, Ic oscillates with a period Φ0/S. We explain completely the
shape and period of the oscillations using a model developped by F. Balestro
for a SIS junction.
At higher fields, the junctions and SQUIDs behavior departs from the SIS
expected Fraunhofer pattern.
We have observed an important dependence of the Ic(H) curves on the normal
part geometry: for long and narrow normal wires, Ic(H) decreases following
a Gaussian dependence, while for larger wires (we have tested a square ge-
ometry) Ic(H) approaches continuously a Fraunhofer pattern.
The 1D semiclassical model developped by G. Montambaux and the 2D nu-
merical calculations of the Usadel equations porposed by J. C. Cuevas are in
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good agreement with our measurements.

In some Al-Au samples, we have found a surprising reentrance of the
critical current at low magnetic fields (B . 45G) and at low temperature
(T . 100mK).
A possible explanation is the presence of a low magnetic impurities content
in the normal metal: at low field, the magnetic field aligns the impurities
moments, decreasing the spin-flip scattering and increasing the supercon-
ductivity, while at larger fields, the depairing action of the magnetic field is
predominant. This theory explains the temperature scale of the reentrance
and its amplitude, but the expected magnetic field scale is two order of mag-
nitudes greater than the observed one!
A second hypothesis is a mesoscopic effect similar to the weak localisation.
In this case, however, the reentrance amplitude predicted is at least one order
of magnitude smaller than the measured one.

2.9.4 Shapiro steps

We have irradiated WAu-Sq with microwaves in order to measure the Shapiro
steps.
At low temperature (T ∼ 150mK), we have observed both integer and frac-
tional Shapiro steps.
Neither the Thouless energy nor the minigap seem to limit the Shapiro steps:
we have found steps up to voltages greater than the Thouless energy and up
to frequencies greater than the minigap (f ∼ 3 ∆̃).
We have measured the magnetic field dependence of different integer and
fractional Shapiro steps. We have found that the integer steps depend on
the magnetic field just like the zero-th order step, the critical current. The
steps n=1/2 and n=1/3, instead, seem to decay slower than Ic(H).
Fractional Shapiro steps are generated by harmonics in the current-phase
relationhip. We can exclude that the harmonics we observe are generated by
multiple Andreev reflexions: we would in that case expect the steps to decay
with the magnetic field faster than Ic(H). We believe that the harmonics in
Is(ϕ) come from a non-equilibrium response of the supercurrent.



Chapter 3

High frequency current
modulation

3.1 Introduction

While an extensive study has been done to understand the dc properties of
SNS junctions, their dynamics is still a open question. The main reason
is that the Josephson effect, well understood in tunnel junctions and point
contact junctions, interferes here with the dynamics of Andreev pairs in the
normal metal. In long SNS junctions, this is even more important since the
properties of the long junctions are set by the normal metal properties: their
energy scale is the Thouless energy ETh = ~D

L2 , where L is normal wire length,
and D is the normal metal diffusion coefficient in the normal metal. As we
have seen, the Thouless energy determines the amplitude of the minigap
induced in the density of states by the proximity effect and the temperature
decay of the critical current.
Probably the simplest way to probe the junction dynamics is to measure its
dc response to an ac excitation. By varying the frequency of the excitation,
the relevant time scales can be revealed. Different regimes then appear, in
which the critical and retrapping currents are strongly modified giving an
insight of the dynamics in the SNS junction.

3.2 Microwaves and superconductors

A BCS superconductor driven out-of-equilibrium by microwave radiation ex-
periences increased superconductivity.
This counterintuitive phenomenon is known as Dayem-Wyatt effect [15] [20],
first observed in microbridges, thin films and strips, and then in supercon-
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ducting tunnel junctions [27] [14] [57].

It is based on the fact that the BCS gap ∆ is related in a self-consistent
way to the energy distribution of the quasiparticles f(ε) by:

1 = λ

∫ ∞
0

ρ(ε)[1− 2f(ε)]dε (3.1)

where λ quantifies the strength of the electron-phonon interaction and
ρ(ε) is the BCS density of states, which depends on ∆.
The thermodynamic gap ∆(T ) is obtained solving the self-consistent equation
3.1 at equilibrium; the distribution function is then a Fermi-Dirac function
at temperature T .
Driving the system out-of-equilibrium with microwaves modifies the energy
distribution of the excitations. To bring the quasiparticles significantly out of
equilibrium clearly demands enough power, but also enough speed: inelastic
processes tend to restore equilibrium. If the microwaves frequency exceeds
the relaxation rate for the inelastic scattering of quasiparticles, a stationary
non-equilibrium distribution of quasiparticles is reached.
When the distribution function is out-of-equilibrium, it differs from a Fermi-

Figure 3.1: Scheme of the RF induced superconducting gap enhancement.

Dirac function, and the superconducting gap, derived from eq. 3.1, is mod-
ified. In particular, the gap is enhanced for a strong ac excitation whose
frequency f is greater than the inverse of the dominant inelastic process,
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electron-phonon in usual superconductors.
The equilibrium ∆(T ) is fairly insensitive to T at low temperature whereas
it varies strongly close to the critical temperature Tc. This reflects the sensi-
tivity of ∆(T ) to a small change in the distribution function, and translates
into the fact that microwave pumping is effective only very close to Tc, ex-
perimentally for T within of few percent of Tc.
In a series of articles, Eliashberg analysed the changes in the properties of a

Figure 3.2: Energy gap calculated for an Al strip, as a function of tempera-
ture, in the presence of microwave radiation for various power values. The
microwave frequency is f = ω/2π = 3GHz, α is the applied microwave power
and γ = ~/τe−ph is the relaxation energy. The equilibrium case corresponds
to α/γ = 0.[35]

superconductor under the influence of a microwave field [31]. He solved the
gap equation 3.1 in presence of a small rf power, that he modeled by adding
to the distribution function a small term to take into account the absorption,
spontaneous emission, and pair-breaking contributions.
Fig. 3.2 shows the results of his calculation: the gap is plotted as a function
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of temperature, for various microwave powers. We can see that for T > Tc
a non-zero gap solution exists, and that for T < Tc the gap is larger than in
the equilibrium case.
From the experimental point of view, Eliashberg’s theory is able to account
reasonably well for the Dayem-Wyatt effect in superconducting strips [35] and
bridges. We can then attribute to Eliashberg’s gap enhancement mechanism
the increased superconductivity that appears when we irradiate a supercon-
ductor with high frequency (f > τ−1

e−ph) microwaves.
Dayem-Wyatt is characterised by:

• an enhanced gap for T ∼ Tc, on a few mK range [36].

• an enhanced critical temperature Tc [20] (see also Fig. 3.3).

• a strong increase of the critical current for T ∼ Tc up to several times
the original value (see Fig. 3.3).

• an Ic enhancement that increases, then gradually decreases, with the
rf frequency and power. The frequency of the maximum increase, as
well as the critical frequency, above which the enhancement appears,
depend both on temperature [35].

3.3 Microwaves and superconducting hybrid

junctions

Hybrid structures made of superconductors and normal metals offer a rich
extension of the physics of superconductivity.
Experiments aimed to discover their dynamics have been made on short and
long SNS junctions [43] [22].
Both kind of junctions present dynamical effects with features similar to
the Dayem-Wyatt effect. In particular, a strong enhancement of the critical
current and of the critical temperature of the junctions is observed. The en-
hancement amplitude is comparable to the superconducting samples results,
but some important differences are nevertheless present:

• the critical current enhancement is present on a large range of temper-
atures (see Fig. 3.4).

• the critical frequency is larger than the inelastic rate.
More precisely, an enhancement was found if ωrf > ωJ = 2πRIc/Φ0
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Figure 3.3: Critical current of a Al strip as a function of temperature at
various levels of microwave power (the value of attenuation is noted on each
curve). The dashed line encloses the region where critical current can be
observed. On passing this line the critical current jumps to zero.[35]

or if ωrf > A/τ ∗, where A ∼ 2 and τ ∗ is the effective time-dependent
Ginzburg-Landau relaxation time for a normal metal [22]. It is easy to
show that τ ∗ = (π/2)2τD.

• the enhanced supercurrent oscillates with rf power as a Bessel function
(see Fig. 3.5).

What are the differences between long SNS junctions and superconduct-
ing strips that cause these changes?
A first proposition [43] involved the important spatial dependence of the
phase in a long SNS junction. The Aslamazov-Larkin (AL) model for proxim-
ity junctions was thus modified to take into account this spatial dependence.
It was found that for large Josephson current densities (as it is the case in
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Figure 3.4: IcR as a function of several rf frequencies for a long SNS junction
of thickness t = 0.15µm, width w = 1µm and length L = 1µm. The solid
line is the theoretical prediction at equilibrium.[22]

the absence of tunnel contacts) this could lead to an excess supercurrent, de-
pending on rf power as a Bessel function and appearing for ωrf > 2π R Ic/Φ0.
A second explanation [22] proposed that the presence of microwaves would
change the pair correlations in the normal wire. The rf excitation would
increase the coupling of the centre of the normal junction to the supercon-
ducting leads, utterly increasing the supercurrent for frequencies higher than
the diffusion rate.
Both propositions can explain some of the peculiarities of long SNS junctions,
but neither is completely satisfactory.
In section 3.7 we present some more experiments that, we hope, help clearing
this complicated panorama. In particular, we show that, indeed, the critical
frequency fc is related to the diffusion rate. However, fc varies strongly as a
function of the magnetic field and temperature, revealing a competiton be-
tween the out-of-equilibrium distribution function and the out-of-equilibrium
density of states. A recent theoretical paper from P. Virtanen and al. [58]
confirms the importance of the diffusion time in the microwave-assisted crit-
ical current enhancement.
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Figure 3.5: Enhanced supercurrent of a Sn-Au long junction when a 10 GHz
microwave power is applied. The data are taken at T = 3.6K > Tc, so that
no supercurrent is observed without the external radiation. The smooth solid
line is the power dependence to be expected from the modified AL model. The
junction is 1µm long, 39µm wide and 100nm thick.[43]

3.4 Sample fabrication

The samples fabricated for these experiments are SNS Nb-Al Josephson junc-
tions, in which the superconducting leads are made of Niobium (Nb), while
the thin normal wire is made of Aluminium (Al).
The normal wires are 300nm wide, 9nm thick and have a length ranging
from 300nm to 5µm. The superconducting contacts are 60nm thick.
The junctions were measured for temperatures above the critical tempera-
ture of Al, Tc ∼ 1.2K, between T = 1.4K and the liquid He4 temperature,
T = 4K. We observe no evidence for superconducting fluctuations in Al in
this temperature range [12].
All the junctions were made in ultra-high vacuum (UHV) by double angle
deposition through a suspended mask, a trilayer PMMA-Si3N4-PES resist,
developped by P. Dubos [24]. We have chosen this particular resist because
it can sustain high temperatures, condition which is essential to e-gun evap-
orate a refractory metal like Nb.
We obtain with this technique much better results than with the conventional
resists, the Nb superconducting leads having a critical temperature ranging
from 6.8K to 8K. Furthermore, the contact resistance between Nb and Al
is negligible, the two evaporations being made one just after the other in a
10−8 mbar vacuum.
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The mask, deposited on a Si-SiO2 substrate, consists of a 400nm PES layer
(Poly Ether Sulfone - commercially known as Victrex), a 60nm layer of rigid
Si3N4 and a 350nm layer of electron-sensitive polymer PMMA (Poly Methyl
Methacrylate).
The main stages of sample fabrication are illustrated in Fig. 3.6.

Figure 3.6: Sample fabrication: from top to bottom and from left to right,
schematic vision of the mask etching and junction deposition.

Lithography First, we draw the pattern on the PMMA layer by
electron-beam lithography with a Scanning Electron Microscope (SEM): the
PMMA polymer chains are broken by the electron beam and can be removed
by immersing the sample in a Methylisobutylcetone (MIBK)-Propanol(IPA)
solution for 40 s. The pattern is defined with a precision of the order of tens
of nanometers.

Rigid mask Through the PMMA mask, we etch the Si3N4 layer with
a SF6 Reactive Ion Etching (RIE) for 2 min 30 s. The Si3N4 provides a rigid
structure which can be suspended over more than 500 nm without falling or
breaking. Since the SF6 RIE also etches the PMMA, it is crucial to have
a good control on etching times to avoid an overetching. At the end of the
process, there is no more PMMA on top of the Si3N4 layer.
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Undercut We etch the PES layer with a high pressure Oxygen plasma.
The pattern is etched for 1 min; a further 7 min etching creates a 500nm
undercut, leaving the Si3N4 intact. Using a high pressure plasma (p∼ 280
mTorr) permits an isotropic etching and increases the undercut.

Figure 3.7: SEM image of a trilayer mask. The dark regions correspond to
the pattern, which is completely etched; the grey regions around the pattern
show the undercut, where the PES is etched and the Si3N4 is suspended.

The SEM image of a completed mask is shown in Fig. 3.7.
Even though this process is quite demanding, it offers good control of dimen-
sions, stability and reproducibility.
The RIE was performed at Laboratoire de Photonique et Nanostructures
(LPN) in Marcoussis, with the help of L. Ferlazzo.

Evaporation Once the mask is ready, the sample is placed in a UHV
evaporator whose base pressure is of 10−9 mbar.
First, we deposit a 9 nm layer of Aluminium under an angle of +26◦, at a
rate of 5 Å/s and at a pressure p = 1 10−7 at the level of the sample. Then,
we deposit a 60 nm layer of Niobium under an angle of −26◦, at a rate of
3 Å/s and a pression of p = 8 10−8. The overlap of the two metals forms the
SN junctions.
While evaporating Nb we use liquid nitrogen to cool down the walls of the
evaporating chamber, ensuring better Nb quality. The choice of the mask is
determinant at this stage, since the Nb is very sensitive to contamination by
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oxygen and other compounds that could outgas from the mask. The Si3N4-
PES mask is stable up to 400◦C, and doesn’t outgas.

Lift-off The remaining resist is eliminated by immersing the sample in a
NMP (N Methyl 2 Pyrrolidone) solution at 60◦ for 10 min.

SEM images of the finished SNS junctions are shown in Fig. 3.8.

Figure 3.8: SEM images of three different Nb-Al junctions. a) Short junction
(NbAl-S), L=330 nm ; b) Long junction (NbAl-L), L=780 nm; c) example
of the longest junction we made with the trilayer technique, L= 5 µm.

sample L (nm) w (nm) R (Ω) τ−1
D,geom (GHz) τ−1

D,fit (GHz) ∆/ETh
NbAl-L 780 320 14.5 8.2 8.2 118
NbAl-S 330 300 6.5 46 29 21

Table 3.1: Average characteristic of the long (NbAl-L) and short (NbAl-S)
samples: length L, width w, resistance R, diffusion rate τ−1

D = D/L2 and ratio
between the superconduting gap ∆ and the Thouless energy ETh = ~ τ−1

D .
These parameters vary in the different samples of: ∆L = ±20nm, ∆w =
±20nm, ∆R = ±1.5 Ω.
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We have measured ten samples, of two different lengths, whose average
characteristics are summarised in the table 3.1. The diffusion rate is calcu-
lated from the resistance and geometry of the samples, and is given by eq.
3.2:

D =
L

w t

1

e2 νF R
(3.2)

where νF = 1.46 1047J−1m−3 is the density of states at the Fermi level
for Aluminum.
We calculate an average diffusion coefficient of D = 5 10−3 m2/s. The
average diffusion rate for samples NbAl-S and NbAl-L, measured from this
diffusion coefficient are listed in table 3.1.
We have also fitted the temperature dependence of Ic using eq. 2.4 as before,
to confirm and precise the value of the diffusion rate.
Despite the very good agreement for sample NbAl-L, the fit of sample NbAl-
S gives τ−1

D,fit = 29 GHz. This corresponds to a length L = 400nm.
Looking at the SEM image of the NbAl-S sample we used the most (see Fig.
3.9), one remarks that the superconducting contacts are not perfectly aligned
to the normal wire: a sligthly longer normal part should then be expected.

3.5 Static measurements: experimental setup

The experimental setup is sketched in Fig. 3.9.

Figure 3.9: Experimental setup for static measurements.

The sample is dc current-biased through a 100 kΩ resistor. An ac current
bias of frequencies up to 40GHz is also applied by a microwave generator.
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A Bias-Tee adds the high frequency current bias to the dc bias.
The bias tee is essential for this experiment because it provides a wideband,
good coupling of the sample to the rf source. 1

The sample is placed at the end of a 50 Ω stainless steel coaxial line and sits
in the liquid of a pumped He4 cryostat. The temperature is controlled by
adjusting the bath pressure and varies from 1.4 K to 4 K.
In this range, sample NbAl-S is always proximity superconducting, while for
sample NbAl-L the proximity effects occurs at T < 1.92K.
When it is superconducting, the sample has a very small impedance, so that
the rf generator of output impedance R0 = 50 Ω acts as a current source.
This is not strongly modified when the sample is in the normal state since
its resistance is ∼ 0.1 - 0.3 R0.
At high frequency the sample has a complex impedance that can be of order
of R0 [42]. However, it is wire bonded to the microstrip on the sample holder
by several (four at most) Al-Si wires in parallel. The inductance in series
with the sample is L = 3.35 nH. This is the dominant impedance at high
frequency (Lω ∼ 200Ω at 10 GHz), so the sample is still current-biased at
high frequency, but the current is reduced. We take into account this re-
duction, together with the attenuation of the cables, that we have measured
separately, to estimate the rf power at the sample level.

We have then two contributions to take into account: the attenuation due
to the cables and bias tee, and the effect of the bonding wire inductance.
To know the attenuation, we have measured with a diode the reflected power
Patt, when the sample is replaced by a short circuit. The reflected power Patt
is given by:

Patt = P0 ∗ α2∗ | Γshort |2 (3.3)

where P0 is the injected power, Γshort = −1 is the reflexion coefficient for a
short circuit, and α2 is the power attenuation coefficient.
We can then access directly the attenuation of the signal traveling down to
the sample and back: the one-way attenuation is simply

√
P0/Patt.

In Fig. 3.10 we show the attenuation as a function of the rf frequency. We
can notice an absorption peak at f=21 GHz.

Let’s see now how we can take into account the effect of the bonding wires
inductance.
We can model a rf generator as a ideal voltage generator with a 50 Ω resistance

1We used two different Bias-Tee: an Aeroflex Bias-Tee, working in the frequency range
50 kHz − 26.5 GHz with less than 3 dB attenuation, and up to 40 GHz with an attenu-
ation of less than 20 dB; and a Anritsu Bias-Tee K252, working in the frequency range
100 MHz − 40 GHz with less than 2.5 dB attenuation.



3.5 Static measurements: experimental setup 91

in series (see Fig. 3.11 (a)). The output voltage V of the ideal generator is
such that a 50 Ω impedance would dissipate the required power P.
We then have:

P = 50I2 V = (50 + 50)I (3.4)

The relationship between the voltage V and nominal power is simply:

V = 2
√

50P (3.5)

The real circuit is of course not always adapted to a 50 Ω impedance. In
our case, the impedance of the circuit, including the rf generator (its 50Ω in
series), is Zc = 50 + Zj + iωL, where Zj is the SNS junction impedance and
L the bonding wires inductance (see Fig. 3.11 (b)).
The current flowing in the circuit is then:

I =
V

Zc
=

2
√

50P

50 + Zj + iωL
(3.6)

In a circuit with only a generator and the sample (see Fig. 3.11 (c)), this
current would be generated by a voltage V ′ such as V ′ = (Zj + 50)I:

I =
V ′

Zj + 50
=
V

Zc
=

2
√

50P

50 + Zj + iωL
(3.7)

V ′ = (Zj + 50)
2
√

50P

50 + Zj + iωL
(3.8)

Figure 3.10: Cables attenuation as a function of the rf frequency.
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We can thus calculate the nominal power of a generator situated just before
the sample. The nominal power of this generator directly connected to the
sample is related to the nominal power imposed by:

P ′ =
1

50

(
V ′

2

)2

= P

∣∣∣∣ Zj + 50

Zj + 50 + iωL

∣∣∣∣2 (3.9)

When the sample is superconducting, its resistance is zero and its Josephson
inductance is much smaller than the bonding wires inductance, so that Zj ∼
0:

P ′ = P/(1 + (ωL/50)2) (3.10)

Finally, the nominal power of a generator connected to the sample is:

Psample = P0 −
1

2

(
10 log

(
P0

Patt

))
− 10 log

(
1 +

(
ωL/50

)2)
(3.11)

To estimate the value of the inductance in series, we have measured the
reflected power of a NbAl-S junction at T=1.7 K, in the range 0.5-3 GHz
with a diode, while the junction was biased with a dc current.
The reflected power Pr is given by:

Pr = P0 ∗ α2∗ | Γsample |2 Γsample =
Z − 50

Z + 50
(3.12)

where Γsample is the reflexion coefficient of the sample and Z is the junction
and bonding wires impedance.

Figure 3.11: Determination of the power at the sample level. The blue circle
is the ideal generator, the dotted square represent the real generator. (a)
Relationship between the nominal power and the output voltage of an ideal
generator; (b) real circuit; (c) power variation due to the bonding inductance.
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When Idc = 0, the junction is in the superconducting state, and

Z = iωL |ΓS|2 = 1 (3.13)

When Idc = 60µA, the sample is normal, and

Z = R + iωL |ΓN |2 =

∣∣∣∣R + iωL− 50

R + iωL+ 50

∣∣∣∣2 (3.14)

By dividing the measured power in the normal state (Pr,N) by that in the
superconducting state (Pr,S), we can obtain directly ΓN , independently of
the system attenuation.
The ratio Pr,N/PrS is shown in Fig. 3.12, where Γ2

N is fitted by L = 3.35nH
and R = 10.6 Ω.
The value found is consistent with the expression for the inductance of a
cylindric wire at high frequency L = µ0

2π
l (log(2l/r) − 1) ∼ 3nH, where

l = 1.5mm is the length of the wire and r = 10µm is its radius.
To extend to other samples with two or three bonding wires in parallel,
we will simply consider the inductance to be inversely proportional to the
number of bonding wires, their length being quite the same for each sample.

Figure 3.12: Ratio between the power reflected by the sample in the normal
state and in the superconducting state, equal to Γ2

N . The fit correspond to an
inductance L = 3.35nH and a resistance R = 10.6 Ω. The oscillations come
from a phase difference between the normal and superconducting state.
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Figure 3.13: Dc voltage vs. dc current characteristic when sweeping the cur-
rent up and down at T=1.4 K for sample NbAl-L. The ac excitation modulates
the dc current and changes the measured switching current.

3.6 Low frequency regime

A dc voltage vs. dc current characteristic for sample NbAl-L at T=1.4 K in
the absence of rf excitation is shown on Fig. 3.13.
We observe a hysteresis when sweeping the dc current up and down. This
hysteresis is present up to 1.6 K for the long junctions and up to 2.23 K for
the short junctions (see Fig. 3.25).
From such V(I) we deduce the critical current I0

c and the retrapping current
I0
r with no excitation.

In Fig. 3.14 we show the temperature dependence of the critical current I0
c

for NbAl-L and NbAl-S samples in normalised units. The continuous lines
are the theoretical expectations for long SNS junctions (see sec. 2.3), cal-
culated using eq. 2.4, but with an amplitude increased by a factor 18.5 for
NbAl-S junctions and 710 for NbAl-L junctions.
We think that the prefactor is due to the non zero superconducting coupling
constant in the Al.
The fact that our normal wires aren’t normal metals, but instead supercon-
ductors above their critical temperatures, doesn’t change the temperature
dependence of I0

c , but only acts as a scaling factor. Indeed, the Ic(T ) decay
is well described by eq. 2.4.
We then believe that the results we obtain on our Nb-Al junctions are qual-
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itatively valid for any SNS junctions containing a normal metal.

Figure 3.14: Renormalized critical current vs. renormalized temperature for
NbAl-L and NbAl-S samples. Each sample is fitted by the theoretical ex-
pectation given by Dubos, with the amplitude increased by a factor a. We
used for sample NbAl-S ∆/ETh = 57 and a = 18.5, and for sample NbAl-L
∆/ETh = 201 and a = 710.

We are interested in the changes occurring in the V(I) curves under irra-
diation. In particular, we concentrate on Ic and Ir.
Increasing the rf frequency, we expect different regimes, the junction behavior
being modified each time the ac frequency crosses one of the system charac-
teristic frequencies. This is indeed what we observe.
We now focus on the low frequency regime, between 10kHz and a few hun-
dred MHz, where the frequency becomes of the order of the inelastic rate
and much smaller than the temperature.
Let us first consider what happens when a slow ac current of small amplitude
Iac is added to the dc current (see Fig. 3.15 (a)). Increasing the dc current
I from zero we expect the sample to jump to the normal (N) state when
I + Iac = I0

c . Thus, for small ac amplitudes (2 Iac < I0
c − I0

r ), one expects
one jump at Ic = I0

c − Iac, i.e. the apparent critical current Ic decreases with
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increased rf power (see Fig. 3.13).
Decreasing I from the N state, the sample stays normal as long as I−Iac > I0

r .

At larger ac amplitudes, i.e. when 2 Iac > I0
c − I0

r , the sample cycles from
S to N and vice-versa, as long as I0

c − Iac < I < I0
r + Iac. Thus in this

regime the V(I) characteristic should have two steps at I1
c = I0

c − Iac and
I2
c = I0

r + Iac. Between the two steps the junction is ohmic, with a resistance
intermediate between zero and the normal state resistance (see Fig. 3.15 (b)).

The two regimes with one step for small Iac and then a double step for
larger Iac is exactly what we observe at 10 MHz, see Fig. 3.16(a). Thus the
sample follows adiabatically the 10 MHz excitation.
We have calculated the V(I) curve in the case of an adiabatic excitation using
the RCSJ model, as explained in section 3.6.1. The numerical calcutation is
shown in Fig. 3.16 as a green dotted line. The good agreement between the
measurement and the expected low frequency curve also shows that we can
calibrate precisely the rf power arriving to the sample.
A further confirmation of the validity of our interpretation is the tempera-
ture dependence of the V(I) curves in the double steps regime: the first step,
I1
c = I0

c − Iac, depends strongly on the temperature like I0
c (T ), while the

second step, I2
c = I0

r +Iac, doesn’t depend on temperature, exactly like I0
r (T )

(see Fig. 3.17 and 3.25).

Figure 3.15: Hysteresis cycle with and without irradiation (a) for a small ac
amplitude, 2 Iac < I0

c − I0
r (up and down curves) and (b) for an amplitude

larger than the hysteresis cycle, 2 Iac > I0
c − I0

r (only the up curve).
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When we increase the excitation frequency up to 100 MHz, the double
steps disappear (see Fig. 3.16(b)).
We show in Fig. 3.18 and 3.19 the V(I) curves for a sample NbAl-S, irradi-
ated with a constant rf power when increasing the rf frequency, at T = 1.5K
and T = 1.59K. When the frequency increases, the double steps close in
continuously, until there is only one step left.
We also note that the V(I) curve is symmetric up to the frequency corre-
sponding to the one step regime. If we increase further the frequency, the
critical current is not affected, while the retrapping current decreases.

Figure 3.16: Dc voltage vs. dc current characteristic measured on sample
NbAl-S with a 10 MHz (a) or 100 MHz (b) rf excitation at several powers:
from right to left, P= -66dB, -52dB, -48dB and -46dB. The dotted black line
corresponds to no rf excitation. The dotted green line corresponds to the
characteristic expected in the adiabatic regime. The temperature is T=1.5 K.
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An explanation to this behaviour is that, when the sample becomes normal,
it never jumps back into the superconducting state even though the current
I(t) spends some time below the dc retrapping current I0

r .
This dynamical effect can be understood if we suppose that the hysteresis
in the V(I) curve is at least partially due to heating of the electrons by the
dissipative current, as suggested in [21]: the sample can return to the N
state only if its temperature is low enough, i.e. when the power injected by
the dc current I is completely dissipated through the substrate by inelastic
processes.
At low temperature and at high frequency (see Fig. 3.16) the phonon cooling
is not efficient enough and the junction heats up as soon as in the normal
state, thus decreasing the retrapping current. The second step I2

c = I0
r + Iac

is then expected to decrease. The normal part cools down during the time
spent in the superconducting state, so that the critical current, and thus the
first step I1

c = I0
c − Iac, aren’t affected.

When the frequency is larger than the inverse thermalization time of the
electrons, the instantaneous current may be below I0

r but electrons are still
hot and the sample remains in the normal state instead of cycling between

Figure 3.17: Sample NbAl-S V(I) curves for different temperatures at P =
−38 dB and f = 50MHz: T = 1.59K (red line), T = 1.7K (blue line) and
T = 1.82K (green line).
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the N and S states. Without cycling, the double steps structure disappears,
and the characteristic frequency for the one-step regime should then be the
inelastic rate.
Since the thermalization of the electrons occurs via phonon emission, we have
compared the temperature dependence of the frequency fr, corresponding to
the transition from two-step to one-step V(I) curves, to a A ∗ T 3 law.
In Fig. 3.20 we present the cubic law that best fits fr. The coefficient A we
find is 2.1 times larger than the theoretical value Ath = 9.1 106 s−1K−3, in
good agreement with previous measurements on Al wires [51].
We can therefore assume that the frequency which determines the transi-
tion frequency from an adiabatic to a out-of-equilibrium regime is indeed the
electron-phonon scattering rate. This strongly suggests that the retrapping
is related to energy relaxation by electron-phonon interaction, as has been
predicted for superconducting weak links [3].

Figure 3.18: Sample NbAl-S V(I) curves for different rf frequencies at T =
1.5K. The rf power is P=-38 dB. The ac frequencies are: f= 40 MHz (red
line), 50 MHz (blue line), 55 MHz (green line), 60 MHz (black narrow line,
no more double steps), and 100 MHz (magenta line).
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3.6.1 RCSJ calculations

We have seen in section 2.4 that the phase dynamics of a SIS junction is well
understood in the Resistive Capacitive Shunted Junction model. Y. Song
has proposed [54] that the same model could well describe also the phase
dynamics of a SNS junction, as long as the SIS characteristic frequencies are
replaced with the corresponding frequencies in SNS junctions.
It could then be interesting to see if there are any similarities between the
frequency dependence of V(I) curves, calculated within the RCSJ model, and
the low frequency behavior of a SNS junction (see sec. 3.6). In particular,
this comparison could help us understand if the phase dynamics is impor-
tant in the SNS dynamics, and how to replace the characteristic times of the
RCSJ model.
We have solved numerically with the Runge-Kutta method (see B) the dif-
ferential equation given by:

Idc + Iac cos(ωτ)− sin ϕ− ϕ̇/Q = ϕ̈ (3.15)

where ϕ is the phase difference across the junction, Idc and Iac are the dc
and ac current bias renormalised to the critical current Ic, ω is the excitation

Figure 3.19: Sample NbAl-S V(I) curves for different rf frequencies at T =
1.59K. The rf power is P=-38 dB. The ac frequencies are: f= 50 MHz (red
line), 60 MHz (blue line), 65 MHz (green line), 70 MHz (orange line), and
80 MHz (black line).
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Figure 3.20: Symbols: temperature dependence of fr for sample NbAl-S; solid
line: temperature dependence of electron-phonon scattering rate for Al.

frequency, renormalised to the plasma frequency ωp, τ = ωpt is the adimen-
sional time and Q = RCωp is the junction quality factor.
In a SIS junction, the quality factor Q determines the hysteresis in V(I)
curves:

Q =
4

π

Ic
Ir

(3.16)

In our SNS junctions, the experimental ratio 4/π Ic/Ir corresponds to a qual-
ity factor Q ∼ 3 − 4. To be able to compare later on the results of SIS and
SNS junctions, we take the SIS junction quality factor Q of this order of
magnitude, i.e. Q=3.
Two characteristic frequencies are present in the model: the relaxation rate
1/RC and the plasma frequency ωp. Since frequencies are renormalised to
the plasma frequency, we have ωp = 1 and 1/RC = 1/Q = 0.33. The low
frequency curves (ω = 0.01) are shown in Fig. 3.21. The junction behavior is
exactly what we have observed in our SNS junctions: at low ac amplitudes,
Ic is decreased when increasing the rf power, verifying exactly Ic = I0

c − Iac.
For 2 Iac > I0

c − I0
r , we find double steps, at I1

c = I0
c − Iac and I2

c = I0
r + Iac.

When we increase the frequency in the simulations, we see in Fig. 3.22
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Figure 3.21: Simulated V(I) curves for Q=3, ω =0.01 and several Iac am-
plitudes: from right to left Iac=0 (black line), Iac=0.2 (red line), Iac=0.3
(yellow line), Iac=0.35 (green line), and Iac=0.45 (blue line).

that the two steps decrease gradually and disappear when ω = 1/RC. Sim-
ulations for different Q factors (2,3,5,10) confirmed that 1/RC is indeed the
relevant frequency.
The curves are very noisy since at high frequency and high rf power the re-
sponse of the model begins to be chaotic.
A correspondance at low frequency can thus be done between the RCSJ
model for SIS junctions and for SNS junctions just replacing the relaxation
time RC by the inelastic time τe−ph.

Indeed, coming back to the mechanic interpretation of the RCSJ model,
the time RC (the Q factor of the junction) determines the friction, i.e. the
time the particle needs to lose the kinetic energy acquired in the normal state
and slow down enough to stop in a potential pit of the phase.
In an analogous way, the electron-phonon time is the time the junction needs
to lose the energy coming from the heating in the normal state, to come back
to the superconducting state.
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Figure 3.22: Simulated V(I) curves for Q=3, Iac=0.41 and several excita-
tion frequencies: ω=0.01 (red line), ω=0.1 (yellow line), ω=0.2 (light blue
line), ω=0.3 (blue line), and ω=0.4 (magenta line), where the two steps have
completely disappeared.

3.7 High frequency regime

Let’s now increase the frequency beyond the electron-phonon rate τ−1
e−ph. The

V(I) curves have only single jumps, and up to frequencies of the order of a
few GHz their features remain qualitatively unchanged. We study now a
regime where the rf frequency f is of the order of the diffusion rate τ−1

D , but
still smaller than the temperature T.

3.7.1 Shapiro steps

When applying a microwave excitation on a SNS junction, Shapiro steps ap-
pear in the resistive part of the I(V) curve, i.e. the current forms a plateau
when V = n ~

2e
ωrf .

We show in Fig. 3.23 the differential resistance R = dV/dI as a function
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of the current I for sample NbAl-S at f = 39GHz. We see negative peaks,
corresponding to plateaus in a I(V) curve.
The shift visible in Fig. 3.23 is due to the filters and Bias-Tee resistance,
Rext = 2.3 Ω, which of the same order of magnitude than the sample resis-
tance. When plotting the differential resistance vs. the voltage across the
sample, V −RextI, we find the expected plateaus position.
In tunnel Josephson junctions, the amplitude of the Shapiro steps when in-
creasing the rf power is described by a Bessel function. In the case of a

Figure 3.23: (a) Differential resistance vs. dc current for NbAl-S sample at
T = 2K when irradiated with a 39 GHz excitation for several rf powers;
curves are vertically shifted for clarity (b) resistance variation (left scale,
continuous line) and amplitude of the current plateaus (right scale, dotted
line) as a function of the rf power for n=1,2,3.
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resistive shunted, current polarised, junction, the amplitude of the current
steps as a function of rf power can be calculated [5] and is qualitatively sim-
ilar to what we found (see Fig. 3.23).
We see integer Shapiro steps up to f = 8.5ETh/h = 2.1 ∆̃/h. Moreover,
at a temperature T = 2K, we measure Shapiro steps with n > 1 up to
V = 13ETh/e. This confirms what we found in sample WAu-Sq (see section
2.8).
On the contrary, we don’t see any fractional Shapiro step, possibly because
of the difference in the ac bias: in sample WAu-Sq the ac excitation was
given by an antenna, while in the case of sample NbAl-S, the ac current is
directly injected in the junction, giving a much stronger coupling.

3.7.2 Critical current enhancement

Figure 3.24: Critical current vs. rf power and bias current in sam-
ple NbAl-L at T = 1.6K for different frequencies: from bottom to top
f=3,6,12,21,33,36,39 GHz.

The critical current behavior is instead not standard: Ic is strongly in-
creased by the microwaves at high frequency.
To measure Ic we current-bias the junction with an 83 Hz linear ramp and
measure the time before dissipation.
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We report in Fig. 3.24 for sample NbAl-L the effect of the microwaves on Ic
for various frequencies.
We observe that, below a certain frequency fc, the critical current is de-
creased by the rf excitation, as in our previous measurements. For f > fc,
instead, Ic is enhanced more and more with increasing rf frequency.
As a function of the microwave power, the enhancement initially increases,
then begins to decrease (which we could interpret as the fist part of an oscil-
lation, as in Fig. 3.5). We never see a complete oscillation because, around
the rf power P=-47 dB, the sample becomes suddenly normal.
The maximum increase amplitude (two times I0

c in NbAl-L sample) is con-
sistent with the classical Dayem-Wyatt effect (see sec. 3.2). The frequency
fc, instead, is much greater than the expected inelastic rate, as was also ob-
served in ref (ref Warlaumont, Notarys).
Fig. 3.25 shows Ic and Ir temperature dependence for NbAl-S sample, with
and without microwave irradiation (f = 39GHz, P = −48dBm). We observe
that Ic is markedly increased by the rf excitation over the whole tempera-
ture range, which again is in strong contrast with what has been observed in
superconducting strips, where the enhanced superconductivity is restricted
to a very narrow region around Tc, of the order of a few mK. Our data are
instead consistent with Warlaumont et al. [22] and with Notarys et al. [43] .

When applying a magnetic field we see, as expected, a monotonic Gaus-
sian decrease of Ic (see section 2.7.2). Fig. 3.26 shows the critical and
retrapping currents Ic and Ir as a function of magnetic field with and with-
out microwave excitation. We can see that the critical current is enhanced
even in a magnetic field, but the amplitude of the enhancement decreases
quickly. At strong magnetic fields (B ∼ 70G) the rf excitation destroys the
supercurrent.
On the other hand, the retrapping current is slightly decreased when the mi-
crowaves are switched on, but its dependence in magnetic field is essentially
the same with or without rf.

To understand those data, we have to consider the interplay between the
known Dayem-Wyatt effect, i.e. the distribution functions dynamics, and
the normal density of states dynamics.
In the SNS geometry, due to coherent Andreev reflections at the N/S inter-
face, a finite gap ∆̃, the so-called mini-gap, develops inside the normal metal.
In a way similar to the BCS gap equation, ∆̃ is determined by the Andreev
bound states as well as by the distribution function of the quasiparticles.
It is thus natural to expect an enhanced induced superconductivity by ac
irradiation.
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Figure 3.25: Ic(T ) (+ rf off, © rf on) and Ir(T ) (X rf off, 4 rf on), with
and without rf excitation (f=39 GHz, P=-48 dBm) on sample NbAl-S.

However, two facts make the physics of SNS samples more complex than that
of superconductors:

• the distribution functions involve not only the inelastic time but also
the diffusion time τD of quasiparticles along the N part, since Andreev
pairs diffuse from the N/S interfaces to the centre of the N part

• the density of states is affected by the rf field through the phase of the
Andreev pairs being modified by the ac vector potential

In order to elucidate the mechanism that sets the critical current enhance-
ment, we have:

1) varied the normal length

2) varied the temperature

3) applied a magnetic field H perpendicular to the substrate

We have observed that:
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Figure 3.26: (a) Ic(H) (+ rf off, © rf on) and Ir(H) (X rf off, 4 rf on),
with and without rf excitation (f=39 GHz, P=-48 dBm) on sample NbAl-L.

1) Ic vs. rf power has a similar behavior for NbAl-L and NbAl-S samples,
but with a frequency fc that is larger for shorter samples:

sample NbAl-S: fc = 17GHz = 0.59 τ−1
D

sample NbAl-L: fc = 7GHz = 0.85 τ−1
D

The frequency fc seems then to be related to the Thouless energy, or to
an energy scale depending on the Thouless energy, such as the minigap.
Already in Notarys et al. [43] it was mentioned that the relevant time
scale may be the effective time-dependent Ginzburg-Landau relaxation
time, which is proportional to the diffusion time: τ ∗ = (π/2)2τD.

2) fc doesn’t depend on temperature at zero magnetic field

3) fc(H) has a non-monotonic behavior, and depends strongly on temper-
ature (see Fig. 3.27).
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In particular, if we note the ratio between the temperature and the
normal part critical temperature Tc,N , i.e. the temperature where the
normal part resistance goes to zero, we observe at high temperatures,
near to Tc,N , a parabolic fc(H) dependence, while at lower tempera-
tures fc decreases and then increases.
We can understand the parabolic increase if we consider the effect of
the magnetic field on the Andreev pairs.
The characteristic time to break an Andreev pair is τH , defined as:

1

τH
=
De2w2

3~2
H2 (3.17)

The faster the pairs break (high τ−1
H ), the faster one should pump the

quasiparticles out of the increased effective gap.
We can then fit the fc curve at the higher temperatures with the law:

fc = α
1

τD
+ β

1

τH
(3.18)

which gives:

fc/fc(0) = 1 +
β

α

π2

3

( Φ

Φ0

)2

(3.19)

The fit, shown in Fig. 3.27 is good, and we have β = 0.23 for the
sample NbAl-L, and β = 0.05 for the sample NbAl-S. Of course, those
fits are not very significant because of the low number of points and
further measurements are needed.

We now look at what happens to the retrapping current when applying
a high frequency excitation.
In Fig. 3.25 we can distinguish two temperature ranges: for T < 2.23K,
when the V(I) characteristic is hysteretic (Ir 6= Ic), the microwaves have no
effect on Ir, which saturates. For T > 2.23K, instead, Ic and Ir are identical,
and they are both enhanced by the rf excitation. Thus, as soon as Ir is a
relevant quantity, its response to the rf excitation is radically different from
that of Ic. Similar results are obtained for the NbAl-L sample.
The behavior of the retrapping current under irradiation could help under-
stand the origin of the hysteresis in SNS junctions (see sec. 2.4). If Ir is
only due to thermal effects (electrons heated up to Te > T because of the
power injected in the normal state), its value would be Ir = Ic(Te). In this
case, Ir should be increased by the rf exactly the same way Ic is. But Ir is
not enhanced, suggesting that the origin of the hysteresis is not completely
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Figure 3.27: Renormalized cross-over frequency fc(H)/fc(0) vs. renormalized
magnetic field H/H0, where H0 corresponds to one flux quantum in the N
part. Full red squares: sample NbAl-L at T=1.6 K; full blue dots: sample
NbAl-S at T=1.4 K; green circles: sample NbAl-S at T=2 K.
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explained within a heating model.

3.8 Conclusion

We have measured the dc voltage vs dc current characteristic of a long SNS
Nb-Al junctions excited by an ac current in the frequency range 100 kHz -
40 GHz.
Our junctions are made by double angle deposition of Nb (forming the super-
conducting contacts) and Al (the normal part). To fabricate the suspended
mask we used a special resist, a PMMA-Si3N4-PES trilayer. This resist can
indeed sustain high temperatures, condition which is essential to e-gun evap-
orate a refractory metal like Nb.
The junctions were measured at temperatures between the critical tempera-
ture of Al, T ∼ 1.2K and the liquid He4 temperature, T ∼ 4K. At these
temperatures, the Al superconducting nature doesn’t affect the qualitative
results, even if the critical current is globally increased.
We observe several regimes in the V(I) characteristics, depending on the fre-
quency of the microwaves.

At low frequency (f . 50MHz), the voltage follows adiabatically the dc
measured V(I) curve. For a strong ac current amplitude 2 Iac > Ic − Ir the
V(I) characteristic presents two voltage steps, one at I1

c = Ic − Iac and the
other at I2

c = Ir + Iac. Between I1
c and I2

c the junction cycles from the nor-
mal to the superconducting state and vice versa. In this region the measured
average resistance is smaller than the normal state resistance.
Our measurements in this regime are in very good agreement with the pre-
dictions.

At intermediate frequency (50MHz < f < 500MHz), the critical cur-
rent and, particularly, the retrapping current are affected when the frequency
crosses the frequency fr. In particular, the double step structure is replaced
continuously by a single step characteristic.
By measuring its temperature dependence, we have found that fr corre-
sponds to the electron-phonon scattering rate τ−1

e−ph. We measure fr =
1.9 107 T 3 s−1K−3, in good agreement with previous measurements on Al
wires [51].
This dynamical effect can be understood if we suppose that the hysteresis is
partially due to heating of electrons by the dissipative current: the junction
can switch from the normal to the superconducting state only if the elec-
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tronic temperature is low enough, i.e. if the power injected in the normal
state is completely dissipated through the substrate by inelastic processes.
When the frequency is higher than the electron-phonon time, the power dissi-
pated by the junction in the N state hasn’t the time to be evacuated through
the phonons, which are the main inelastic process at high temperature. The
junction then heats up, and the retrapping current decreases. The hysteresis
cycle increases, and the excitation amplitude is not large enough anymore to
cycle between N and S. The double step region is thus suppressed.
A similar effect is reproduced by the RCSJ model for junctions of Q =
4/π Ic/Ir ∼ 1.5− 10 (of the same order of magnitude than the experimental
one) when the ac frequency crosses fr = 1/RC. We can then establish a
parallel between the kinetic energy relaxation time RC in a SIS junction,
and the energy relaxation time τe−ph in a SNS junction at T & 1K.

At high frequency (f > 5GHz), we observe a strong enhancement of the
critical current over a large temperature range.
In particular, the microwaves nearly double the critical current in sample
NbAl-L, while the increase of Ic in sample NbAl-S is about 11%. The retrap-
ping current is not affected at all.
This enhancement increases with the rf frequency and seems to oscillate with
the rf power (we observe only one oscillation period).
The characteristic frequency fc for the critical current enhancement seems
related to the diffusion rate τ−1

D , and like τ−1
D doesn’t vary with temperature

and depends strongly on the normal wire length.
When applying a dc magnetic field, we observe a parabolical increase of fc
near the proximity superconductivity critical temperature, while, at lower
temperatures, fc is not monotonic.
Indeed, at high temperature the magnetic field acts as a pair breaking mech-
anism, with a typical breaking rate τ−1

H ∝ H2. This excess of quasiparticles
weakens the superconductivity, so that an enhanced critical current is at-
teined only if the excitation is faster than the pair breaking.
At low temperature, fc first decreases, then, at strong magnetic field, in-
creases. We guess a competition between the pair breaking mechanism at
large fields, and the desity of states dependence on H at low fields (the
minigap decreases with the magnetic field).



Chapter 4

High frequency phase
modulation

To measure the high frequency current-phase relation of an isolated SQUID
is not easy.
One first needs to control and modulate at high frequency the phase differ-
ence across the junction.
Then, one needs to access the high frequency response of the supercurrent
(possibly separating the part of the current that follows the excitation in
phase from the one that is out-of-phase).
One possibility to measure, in a dc configuration, the current-phase relation
when the junction is excited at high frequency, is to impose a dc magnetic flux
into the ring, to set the dc phase, an antenna to provide the high frequency
phase modulation, and a micro-Hall bar to detect the magnetic moment of
the supercurrent circulating in the ring [25].
However, the micro-Hall bar itself can be sensitive to the rf irradiation, mak-
ing it difficult to separate the signal coming from the supercurrent from the
signal due to the bar [8]. Moreover, it is not possible within this method
to measure independently the in and out-of-phase responses to the high fre-
quency excitation.
In our setup we use a superconducting coil to set the dc phase across the
junction, and a superconducting multimode resonator both to provide the
phase modulation (modulation possible at all the frequencies multiples of the
resonator base frequency) and the readout: the variation of the resonator fre-
quency gives the in-phase response, while the variation of the quality factor
gives the out-of-phase response of the supercurrent.
This technique was developped in the group for contactless measurements
of the response of the persistent currents in 104 normal Aharonov Bohm
rings [16] [47]. Thanks to the fact that the supercurrent in a SNS junction
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is greater than the persistent current in a normal ring by a factor g ∼ 104

(g being the dimensionless conductance of the normal wire), we are able to
measure a single ring. Moreover, it is possible in a SNS ring to adapt the
length of the superconductors to maximise the coupling to the resonator,
thus maximising the signal.

4.1 Superconducting multimode resonator

Figure 4.1: Nb superconducting multimode resonator.

The superconducting resonators we have fabricated (see Fig. 4.1) were
conceived by B. Reulet and H. Bouchiat [48]. They are formed by two par-
allel Nb meanders on a sapphire or silicon dioxide substrate.
Each line is 20 cm long, 1.7µm wide and 1µm thick, and the distance be-
tween the two wires is 6.7µm. The two-wire line is folded into a 3mm x
1mm structure (see Fig. 4.1).
As shown in Fig. 4.1, at both ends of each line there are several capacitors
in series. By choosing where to connect the rf generator, one can control the
strength of the capacitive coupling of the resonator to the environment. In
particular, we aim to be in the under-coupled regime, with a quality factor at
its highest, providing a maximum sensitivity. When the frequency increases,
however, the coupling also increases, so that sometimes we are forced in the
over-coupled regime.
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4.1.1 Resonance frequency and quality factor

We characterise the resonance by two parameters: the resonance frequency
f and the quality factor Q.
The quality factor Q is defined as the ratio between the energy stored and the
energy dissipated in a time 1/ω. Experimentally, Q is related to the sharp-
ness of the resonance: Q = f/δf , where δf is the width of the resonance at
half height.
Both the resonance frequency and the quality factor depend strongly on the
temperature T, the magnetic field H and the measurement frequency f (see
appendix C).
In order to minimize the dependence of the resonance with the temperature
and magnetic field, a thick Nb structure has been chosen for the supercon-
ducting resonator.
Indeed, a thick structure has properties close to those of the bulk, and bulk
Nb has a high Tc (Tc = 9.2K), and a relatively high critical magnetic field
(Hc1 ∼ 1000G). Since we work at temperatures T < 1.5K and with mag-
netic fields H < 10G, very low in comparison to Tc and Hc1, we expect Q
and f to be practically independent of temperature and magnetic field.
It is indeed the case, since we observe that Q varies less than 1% and f less
than 10−5.

4.1.2 Resonant conditions

The resonant conditions are given by:

Lr = n
λ

2
= n

c/
√
εr

2 f
(4.1)

Lr is the resonator length. The relative dielectric constant εr is the av-
erage between the sapphire substrate and the vacuum dielectric constants:
εr ' (1 + 10)/2 = 5.5.
The base resonance frequency is then f = 320MHz, in agreement with the
measured first harmonic of the resonator, which is f = 365MHz.
Eq. 4.1 is exactly the same one would use for a bifilar straight line with
current zeros at both ends (this condition in our case is imposed by the
capacitors): the fact that the resonator is folded doesn’t seem to affect its
resonances. However, the electro-magnetic field is confined, thanks to the
folding, within 5µm from the resonator.
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In a bifilar line, the inductance and capacitance are:

Lr =
µ0

π
ln

(
D

r

)
Lr = 1.52 10−7 He (4.2)

Cr = π
ε0 εr

ln(D/r)
Lr = 1.31 10−11 F (4.3)

where D is the distance between the two wires and r the radius of the wires.
The resonance frequency of a bifilar line,

2π f =
π√
Lr Cr

(4.4)

is equivalent to eq. 4.1.

Our base resonance frequency f1 = 365 MHz is followed by harmonics up
to more than 6 GHz with a quality factor Q = 104 at f1 and Q & 5 102 for
frequencies up to the 17th harmonic.
Thanks to the high Q factor, we are able to detect extremely small variations
of f and 1/Q:

δf

f
∼ 10−9 δ(

1

Q
) ∼ 10−10 (4.5)

4.1.3 Fabrication method

To fabricate the Nb wires thick enough, one can’t use standard evaporation/lift-
off method.
Instead, we deposit by sputtering a Nb film 1µm thick over the substrate
(adherence is good for both sapphire and Si02 substrates).
By optical lithography, we expose the resonator pattern, in which, after de-
veloping the resist, we evaporate a 50 nm Al film.
The Al film acting as a mask, we etch all the non-protected Nb with a SF6

Reactive Ion Etching (Nb being more reactive than Al to the fluorine). Fi-
nally, we dissolve the remaining Al in a KOH solution.

4.2 ac SQUID fabrication

4.2.1 Nb-Au AC SQUIDs

Two types of AC SQUIDs were measured.
First, we fabricated on a sapphire substrate a pattern of 25 Nb-Au AC
SQUIDs from a Nb-Au bilayer, following the same procedure detailed in
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sec. 2.1.2 for SQ-NbAu samples.
After SEM observation, we erased by FIB etching 16 rings, leaving 9 rings
without defaults and with a similar normal part length.
The etched rings are shown in Fig. 4.2 (b), while the rings we measured are

Figure 4.2: (a) SEM image of four of the Nb-Au AC SQUIDs measured and
(b) SEM image of what is left after the FIB etching.

shown in Fig. 4.2(a).
To couple the rings to the resonator we deposit on the resonator a droplet of
PMMA A6, and a MYLAR sheet of thickness 1.4µm. As soon as the PMMA
has dried, we deposit a second PMMA drop, on which we pose the sapphire
face containing the rings. While the PMMA is still liquid, the sapphire sub-
strate is shifted to align the SQUIDs between two resonator lines (see Fig.
4.3); this is possible since the sapphire is transparent. A good alignement
assures that the flux of the magnetic field, generated by the resonator into
the rings, is maximum.

The preliminary results obtained on this pattern confirmed that the mea-
surement tecnique we use is sensitive enough to detect a single ac SQUID.

4.2.2 W-Au ac SQUID

In a second moment, we have then fabricated a single SNS ac SQUID directly
on the resonator sapphire substrate.
The fabrication method is exactly the same as the one used for the samples
W-Au on a SiO2 substrate described in section 2.1.3. However, the insu-
lating nature of the sapphire substrate complicates the process, because the
charge accumulation on the substrate deflects the ion beam. We found that
connecting to the ground the Nb lines mostly solves the problem.
Let’s now detail the SQUID fabrication process. First, we deposit a Au wire
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between two resonator lines, by e-beam lithography and thermal evaporation.
We use the FIB to contact the Au wire with thin superconducting W wires.
We then connect the thin W wires to the Nb thick resonator line, whose
surface oxide is previously etched with the FIB. To create wide and thick W
wires that don’t break when stepping over the 1µm thick resonator line, we
need to increase the beam current and the deposition time.
Fig. 4.4 shows the final SQUID.

Figure 4.3: (a) Optical microscope image through the sapphire substrate of
the rings, which is superposed to the resonator fabricated on a Si02 substrate.
One can see on the bottom of the image the folding of the resonator lines.
On top, dark rectangles are visible: they are the AC SQUIDs. A good focus
is very difficult to obtain since the resonator and the SQUIDs have a height
difference of about 1− 2µm. (b) Optical microscope image of SQAC-NbAu.
Before the measurement, two of the 11 visible SQUIDs have been removed.
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A first set of measurements revealed that the field screening, due to the
ring inductance, was too large. We thus had to reduce the ring perimeter to
decrease the ring inductance. We then made new contacts between the thin
W wires and the resonator, interrupting the previous ring by FIB etching
(see Fig. 4.5).

Figure 4.4: SEM tilted image of AC2 ring. The Au wire is contacted with
thin W wires. The thin wires are connected to the 1µm thick resonator by
wide and thick W wires. The Au wire is indicated with a yellow line.

Figure 4.5: SEM image of SQUIDs SQAC-WAu-1 and SQAC-WAu-2. A red
line passes on the bigger ring SQAC-WAu-1, while a blue line passes on the
reduced ring SQAC-WAu-2.
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All those steps left unchanged the W wires contacting the Au part, thus con-
serving exactly the same SNS junction, which was measured again and gave
the results described in section 4.5. We call SQAC-WAu-1 the sample with
the original ring perimeter, and SQAC-WAu-2 that with the reduced ring.

This modification of the sample is a good example of the many possi-
bilities offered by the FIB fabrication method. However, finding the good
deposition parameters and learning the technique is not simple, and many
attempts were necessary before atteining a good fabrication control.
We show in Fig. 4.6 (a) the approach of the nozzles injecting the W gas to
the sample. The nozzles have to be as close as possible to the sample for a
good deposition of W, and they are lowered gradually. The nozzles-sample
distance is estimated from the intensity of the nozzles shadow on the res-
onator. In Fig. 4.6 (b) we show the effect of an accident during the lowering
of the nozzles, causing a big scratch in the resonator!

Figure 4.6: (a) Nozzle injecting the W gas in proximity of the resonator. (b)
Result of an excessive lowering of the nozzle.

4.2.3 AC rings geometry

The geometrical characteristics of the SNS junction, deduced from the SEM
pictures, are listed in Table 4.1.
To determine the Thouless energy and the resistance of the wire of these
isolated samples, we used the characteristics of the similar samples measured
in a dc current bias configuration.

From the comparison with samples SQ-NbAu, we find for sample SQAC-
NbAu a resistance R = 1.7 Ω and a Thouless energy ETh/kB = 30mK, using



4.3 Measurement setup 121

sample L(µm) w(µm) t(nm) S(µm2) p(µm)
SQAC-NbAu 1.56 0.28 50 8.9 17.8
SQAC-WAu-1 1.51 0.33 50 93.4 80.2
SQAC-WAu-2 1.51 0.33 50 34.6 32

Table 4.1: Geometrical characteristics of SQUIDs SQAC-WAu-1 and SQAC-
WAu-2, deduced from SEM images. The two SQUIDs consist in the same
SNS junction, connected differently to the Nb resonator.

the same diffusion coefficient as samples SQ-NbAu, D = 1.02 10−2m2/s.

For samples SQAC-WAu, starting from the resistance per square of sam-
ples W-Au, R� = 0.45 Ω, we obtain R = 2.2 Ω. The diffusion coefficient
of the two W-Au samples, D = 1.3 10−2m2/s, gives a Thouless energy of
ETh/kB = 41mK.
But these values of resistance and Thouless energy can’t reproduce the data,
such as the temperature dependence of the critical current, which is described
by ETh/kB = 90mK.
It is however possible that part of the normal wire is contamined by W par-
ticles, as we already observed in sample WAu-N (Fig. 2.4). Considering a
contamination of about 250nm at each NS contact (like in sample WAu-
N), the effective normal length becomes 1µm, giving a Thouless energy of
ETh/kB ∼ 90mK, which corresponds the the value deduced from the fit of
Ic(T ).

From the geometrical characteristic of the AC SQUIDs we deduce two
of the most important parameters needed to correctly understand our data:
the ring self inductance L and the mutual inductance between the ring and
the resonator line L′ (see appendix D for the detailed calculation).
The ring self inductance L quantifies the screening of the external magnetic
field. The mutual inductance between the ring and the resonator line L′
determines the coupling between the current in the SQUID and the resonator.

4.3 Measurement setup

The aim of this experiment is to measure the in-phase (non dissipative) and
out-of-phase (dissipative) response of the current as a function of the phase
difference across the junction.
In a SQUID one can control the phase difference by just applying a magnetic
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sample L (pH) L′ (pH)
SQAC-NbAu 8 1.2
SQAC-WAu-1 36.5 22.5
SQAC-WAu-2 15 5

Table 4.2: Summary of samples SQAC-WAu-1 and SQAC-WAu-2 induc-
tances: self inductance L and effective mutual inductance L′ with the res-
onator line.

field into the ring:

∆ϕ = −2π
Φdc

Φ0

(4.6)

where Φdc = Hdc S is the dc magnetic flux in the ring surface.

In addition to the dc flux Φdc through the ring, an ac flux δΦ cos(ω t) is
generated by the resonator line. The response of the ac current δi flowing in
the SQUID is then:

δi (Φdc) = χ′(Φdc, ω) δΦ cos(ωt) + χ′′(Φdc, ω) δΦ sin(ωt) (4.7)

At low frequency, we expect the supercurrent to follow adiabatically the ac
excitation, thus giving a response completely in-phase:

χ′(ω = 0) =
∂IJ
∂Φdc

χ′′(ω = 0) = 0 (4.8)

where IJ is the non-dissipative Josephson current.
When increasing the frequency above the characteristic rates of the SNS
junction, we expect an out-of-phase, dissipative part to appear, and the sus-
ceptibility of the junction to become complex: χ = χ′ + i χ′′.

The resonator, besides providing the high frequency excitation, is a very
sensitive detector of the SQUID response.
We can access the in-phase and out-of-phase responses χ′ and χ′′ by mea-
suring the resonance frequency shift δf and the variation of the resonance
width, proportional to δ(1/Q), with the dc flux:

−2
δ f

f
= k2

n

L′2

Lr
χ′ − L (χ′2 + χ′′2)

(1− Lχ′)2 + L2 χ′′2
(4.9)

δ

(
1

Q

)
= k2

n

L′2

Lr
χ′′

(1− Lχ′)2 + L2 χ′′2
(4.10)
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kn quantifies the ac current at the sample position for the nth resonance
frequency. L′ is the effective mutual inductance between the sample and the
resonator, L is the ring self inductance and Lr is the resonator self induc-
tance.
The derivation of eq. 4.9 and 4.10 is detailed in chapter 5.

Defining Fv and Qv as quantities proportional to the resonance frequency
variation and the 1/Q variation due to the sample:

Fv =
Lr

k2
n L′2

(
− 2

δ f

f

)
Qv =

Lr
k2
n L′2

δ

(
1

Q

)
(4.11)

we can invert eq. 4.9 and 4.10 to find the real and imaginary parts of the
response function χ:

χ′ =
Fv + L(F 2

v +Q2
v)

L2Q2
v + (1 + FvL)2

χ′′ =
Qv

L2Q2
v + (1 + FvL)2

(4.12)

Note that, for a ring with a very small inductance or a very small response
χ (Lχ << 1), we obtain:

χ′(Φdc) = Fv(Φdc) χ′′(Φdc) = Qv(Φdc) (4.13)

Experimentally, we measure the frequency and quality factor shift with
the dc magnetic field. We have then the Fv and Qv variations with Φdc, but
we have no information about their absolute value.
To use eq. 4.12, we need to know the absolute value of Fv(Φdc) and Qv(Φdc).
We have then to determine Fv(Φdc = 0) and Qv(Φdc = 0).
For χ′′, we assume in our frequency and temperature range (fmax = 1.36ETh/h,
Tmax = 11.1ETh/kB):

χ′′(Φdc = 0) = 0 (4.14)

because the dissipation, always positive, is zero at Φdc = 0, where the gap
is completely open (~ω < ∆̃(Φdc = 0)). Since Qv is proportional to χ′′, we
have Qv(Φdc = 0) = 0.
The χ′(Φdc) curve is instead assumed to be centred around zero (|χ′max| =
|χ′min|). Fv is then shifted to obtain a centred χ′.
These hypothesis are essential when, the product Lχ being large, we need to
use eq. 4.12. However, we see in sec. 4.5 that at high temperature (T ∼ 1K),
the current in the ring, and thus the response χ, are small: we can then ne-
glect the field screening. In this case, eq. 4.13 is valid, and we can access
χ′(Φdc) and χ′′(Φdc) without needing the flux independent contribution of Fv
and Qv.



124 High frequency phase modulation

At lower temperature, χ′(Φdc) and χ′′(Φdc) are instead deduced by eq. 4.12,
using the above assumptions for the Fv and Qv values at zero flux. The
curves we obtain are similar to the high temperature ones, confirming our
assumptions for Fv(Φdc = 0) and Qv(Φdc = 0).

In conclusion, using eq. 4.12 and 4.13, we can access the phase depen-
dence of the in-phase and out-of-phase responses χ′ (ϕ) and χ′′ (ϕ) just by
measuring the resonance frequency shift δf and the inverse quality factor
change δ(1/Q) as a function of the dc flux Φdc.
This is valid only in the linear regime, where the modulation amplitude of
the dc flux is much smaller than Φ0.

4.4 Measurements on sample SQAC-NbAu

Preliminary measurements were done on sample SQAC-NbAu, a pattern of
9 AC SQUIDs glued on top of a resonator.
We see in Fig. 4.7 the resonance frequency shift δf vs. the external flux Φext

for f1 = 380MHz, T = 50K and an applied rf power P = 5nW .
We notice that oscillations of period Φ0/S, where S is the ring surface,

are superposed to a parabola. The parabola is due to the resonator line
dependence on the magnetic field (see Fig. C.1), while the oscillations are
proportional to the in-phase response of sample SQAC-NbAu.
When substracting the parabola, we observe an in-phase signal strongly an-
harmonic, with a ratio between the second and the first harmonic r21 ∼ 0.4.
When varying the temperature from 50mK to 700mK the signal ampli-
tude remains constant. This is a very surprising behavior, since the in-phase
response is expected to decrease with the temperature exponentially, like
Ic(T ).
A possible explanation is that the applied rf power heats the sample, so
that the electronic temperature, and thus the response amplitude, don’t vary
much between 50mK and 700mK.
We then want to reduce the rf power, to avoid the heating and to be in the
linear regime, but without much decreasing the signal.
To do that, we fabricated an ac SQUID directly on the resonator substrate.
We thus increased the mutual inductive coupling, and we were able to mea-
sure a single ac SQUID in the linear regime.
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4.5 High frequency linear response

We present in this section the main features of the in-phase and out-of phase
linear response of sample SQAC-WAu-2 for

• T : 0.55K − 1K, corresponding to 6.1ETh < kB T < 11.1ETh

• f : 365MHz − 2.57GHz, corresponding to 0.2ETh < hf < 1.37ETh

The power injected is of the order of Prf ∼ 5 pW .
To estimate the flux modulation in the ring, we first calculate the current Ir
in the resonator via

Ir =

√
P Q

Lr ω
(4.15)

We find the above equation from the quality factor definition: Q is the ratio
between the stored energy Lr I2

r and the energy dissipated in a time 1/ω,
equal to P /ω.
Knowing the mutual inductance, we can derive the ac flux induced through
the ring:

δΦ =M Ir (4.16)

Figure 4.7: Resonance frequency shift vs applied flux of sample SQAC-NbAu
at f1 = 380MHz, T = 50mK and for an applied rf power P = 5nW .
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We find a flux modulation δΦ ∼ 0.01 Φ0, confirming that we are indeed in
the linear regime.

Characteristic examples of our SQUID response are given in Fig. 4.8 and
4.9, where we show the in-phase and dissipative response at T = 1K and
T = 0.67K for the lowest resonance frequency f1 = 365MHz. At T = 1K,
the in-phase and out-of-phase response are directly proportional to Fv(Φdc)
and Qv(Φdc) (see eq. 4.13), while at T = 0.67K, the screening is important
and we use eq. 4.12.
All the experimental curves presented in this section are the average of 30 to
100 field scans on sample SQAC-WAu-2.
At high temperatures compared to the minigap, the expected response at
zero frequency is harmonic, and entirely in-phase:

χ′(ω = 0) =
∂IJ
∂Φ

= −2π Ic
Φ0

cos

(
2πΦ

Φ0

)
χ′′(ω = 0) = 0 (4.17)

Just like the zero frequency case, the observed χ′ and χ′′ oscillate with the
dc flux with a periodicity corresponding to a quantum flux Φ0 into the ring
surface.

But, apart from the periodicity, the finite frequency case of Fig. 4.8 and

Figure 4.8: In-phase (red line) and out-of-phase (blue line) response vs. the
dc flux into the ring Φint for the first resonant harmonic f1 and at T = 1K,
compared to the low frequency in-phase response χ′(ω = 0) (black dotted line).
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4.9 is clearly very different from the zero frequency one, even at a frequency
lower than ETh: f1 = 0.2ETh/h. We observe an in-phase response strongly
anharmonic with the dc flux, and an out-of-phase response, that, far from
being zero, is even greater than the in-phase response and has its maximum
at nΦ0/2.
This shows that, at high frequency, the non dissipative response is not simply
the flux derivative of the supercurrent, and that the dissipation is enhanced
at phase differences such that the minigap closes.

Before proceeding further in the analysis, let’s detail how we deduce the
exact χ′ and χ′′ in presence of a finite ring inductance.

4.5.1 Data treatment

As we have seen, if the ring inductance L is negligible, the in-phase and out-
of-phase responses χ′ and χ′′ are given by the resonance shift and the quality
factor variations:

Figure 4.9: In-phase (red line) and out-of-phase (blue line) response vs. the
dc flux into the ring Φint for the first resonant harmonic f1 and at T =
0.67K, compared to the low frequency in-phase response χ′(ω = 0) (black
dotted line).
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χ′ = Fv =
Lr

k2
n L′2

(
− 2

δ f

f

)
χ′′ = Qv =

Lr
k2
n L′2

δ

(
1

Q

)
(4.18)

However, if the ring inductance is important, the response is given by the
more complex eq. 4.12.
To determine the influence of the inductance, we compare the measured Fv
to the χ′ calculated from eq. 4.12 using the measured Fv and Qv: if they are
equal, the inductance can be neglected, while a great difference between Fv
and χ′ means that L needs to be taken into account.
Fig. 4.10 shows Fv, Qv, χ

′ and χ′′ at T = 0.67K for f1 = 365MHz. We see

Figure 4.10: Influence of the ring geometrical inductance on the measured Fv
and Qv at T = 0.67K and f1 = 365MHz. Left: comparison between Fv (red
circles) and χ′ (blue line). Right: comparison between Qv (red circles) and
χ′′ (blue line).

that the ring geometrical inductance is indeed non-negligible, particularly for
the χ′ curve.
χ′′ is not strongly affected. This is in general true at all the temperatures
and frequencies studied.
On the contrary, the χ′ amplitude is sensitive to the ring inductance: at
T = 0.67K and f = 365MHz the difference between Fv and χ′ is about a
factor two. However, the amplitude variation is less and less marked when
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increasing the frequency and the temperature, so that at T = 1K Fv and χ′

coincide and we can neglect L (see Fig. 4.11).

Figure 4.11: Influence of the ring geometrical inductance on the measured Fv
and Qv at T = 1K and f1 = 365MHz. Left: comparison between Fv (red
circles) and χ′ (blue line). Right: comparison between Qv (red circles) and
χ′′ (blue line).

A second important effect due to the finite ring inductance is the screening
of the dc applied flux by the supercurrent. The flux through the ring, that
we call internal flux, is given by:

Φint = Φext + L IJ(Φint) (4.19)

Fig. 4.12 shows χ′(T = 0.67K, f = 365MHz) as a function of the internal
and external flux Φint and Φext. As a function of the internal flux, the curve
appears shrinked around the multiples of Φ0, and the peak at Φ0/2 appears
widened.
This effect is stronger when the temperature decreases, since IJ increases.

When

2π
L Ic
Φ0

= β > 1 (4.20)
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the screening effect leads to a hysteretic behavior.
In Fig. 4.13 we illustrate the hysteresis present when β > 1, by tracing

Φint(Φext). To do so we have calculated Φext as a function of Φint from eq.
4.19, supposing a sinusoidal relation IJ(Φint) = −Ic sin(2πΦint/Φ0):

Φext = Φint + L Ic sin

(
2π

Φint

Φ0

)
(4.21)

and then, we have traced Φint(Φext).
We see that when the external flux increases from zero, the internal flux
increases first linearly as Φint = Φext/(1 + β), then increases faster and in A
it jumps to B. When decreasing the external flux from B, the internal flux
jumps back only at C. Because of the hysteresis cycle ABCD, the entire range
of internal flux between A and C is not accessible.

In sample SQAC-WAu-2 we see an hysteresis up to a temperature Th ∼
0.6K. The complete flux response of the SQUID is thus accessible only for
T > 0.6K.
In Fig. 4.14 we show the curve Φint(Φext) for the three different temperatures

Figure 4.12: χ′ at T = 0.67K and f = 365MHz as a function of the internal
flux Φint (blue line) and the external flux Φext (red circles)
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we studied during this experiment. Since the hysteresis is still present at T =
0.55K, we need the contribution of the up curve (external field increased)
and the down curve (external field decreased) to explore the whole permitted
range of fields.
In Fig. 4.15 (left) we show χ′ as a function of the external flux Φext. The
hysteresis is clear. In Fig. 4.15 (right) we trace χ′ as a function of the internal
flux. A flux interval of amplitude 0.32 Φ0, centred around the multiples of
Φ0/2, is not accessible.

4.5.2 Thouless energy

The temperature at which the hysteresis appears is in our case Th = 0.63K.
For temperatures lower than Th we aren’t able to access the whole field de-
pendence of the response, so we concentrate on the high temperature regime.
However, even if the curves at the lowest temperatures suffer an important
loss of information, they can nevertheless be useful.

Figure 4.13: Internal flux vs. external flux for β = 1.65. When increasing
the external flux, the internal flux follows up to A, where it jumps to B.
Decreasing the external flux, the internal flux only jumps back in C, creating
an hysteresis cycle. The red lines mark the internal flux range not accessible.
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In fact, it is possible to deduce exactly the value of the critical current that
causes a particular hysteresis, and thus access the Ic(T ) curve. Indeed, the
values of Φext corresponding to the sharp jumps in the measured χ′ and χ′′

curves are directly related to the critical current. We have then traced the

Figure 4.14: Internal flux vs. external flux for T = 0.55K, T = 0.67K and
T = 1K.

Figure 4.15: In-phase response at T = 0.55K. Left) χ′(Φext), up curve (light
blue) and down curve (blue). Right) χ′(Φint), up curve (light blue) and down
curve (blue).
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Φint(Φext) curves as explained before, varying the critical current to find the
Ic that gives a jump at the observed Φext.
As we have seen in section 2.3, from the temperature dependence of the crit-
ical current one can deduce the Thouless energy.
We recall that this information is particularly precious, since we can’t mea-
sure directly the transport properties of our SNS junction.
From the fit of the obtained Ic(T ) curve we have:

• ETh = 90mK

• R = 0.52 Ω

The Thouless energy we had calculated from the geometry of the wire and
an estimated diffusion coefficient was ETh = 41mK. How to explain this
discrepancy?
Due to the fabrication method, we can suppose a W contamination in proxim-
ity of the superconducting contacts of about 250nm on each side (comparable
to the contamination seen for sample WAu-N). This leaves a normal wire of
length L = 1µm, and thus a Thouless energy ETh = 90mK when using the
same diffusion coefficient that sample WAu-N, D = 1.3 10−2m2 s−1.
The square resistance accounting for R = 0.52 Ω is R� ∼ 0.17 Ω, which is
smaller than in the case of the two samples W-Au, and about half of the
square resistances measured (see table 2.2). It is possible that the contact
resistance of this wire is lower than in the other samples as a consequence of
the FIB etching step before the W deposition.

4.5.3 Temperature dependence of χ′ and χ′′

In this section we investigate the in-phase and out-of phase response depen-
dence on temperature.
We show in Fig. 4.16 and 4.17 χ′(Φint) and χ′′(Φint) at f1 = 365MHz,
the lowest frequency studied, for three different temperatures: T = 1K,
T = 0.67K and T = 0.55K. Since this last temperature is below Th, we
miss a whole range of fluxes around Φ0/2.

The oscillation amplitude of the in and out-of-phase response for T =
0.67K and T = 1K is reported in table 4.3.
At zero frequency, δχ′, the amplitude of χ′, decreases exponentially with the
temperature. At finite frequency, δχ′(T ) still decreases roughly like Ic(T ):

δχ′(0.67K)

δχ′(1K)
= 3.3

χJ(0.67K)

χJ(1K)
= 3.1 (4.22)
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The dissipative response amplitude δχ′′ also decreases with temperature,
roughly like δχ′.
To quantify the effect of the finite frequency, we can compare the ampli-
tude of non dissipative response δχ′ to the amplitude of the zero frequency
response, δχJ(T ) = 2 × 2π Ic(T )/Φ0, and the amplitude of the dissipative
response δχ′′ to ωG, where G = 1/R is the normal state conductance.
We observe in Fig. 4.17 that δχ′′(1K) ∼ 0.8ω1G, while δχ′′(0.67K) ∼
4.4ω1G.
δχ′ is on the contrary smaller than δχJ(T ): δχ′(1K) = 0.1 δχJ , and δχ′(0.67K) =
0.09 δχJ .

For all temperatures we observe a great anharmonicity in χ′ and χ′′. To
estimate the anharmonicity we report in table 4.4 the ratio r21 between the
second and the first harmonic.
We notice that the second harmonic in χ′ and χ′′ is quite important at both

Figure 4.16: In-phase response at T = 1K (red line), T = 0.67K (blue line)
and T = 0.55K (light blue line) for f = 365MHz.
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temperatures, being at least 20% of the first harmonic. When increasing the
temperature, χ′ becomes more harmonic, while χ′′ seems to become more
anharmonic.

4.5.4 Frequency dependence of χ′ and χ′′

Fig. 4.18 and 4.19 show the response at T = 0.67K for two different fre-
quencies: f1 = 365MHz and f4 = 1.56GHz.

δχ′ and δχ′′ greatly decrease when increasing the frequency. δχ′ decreases
faster than δχ′′:

δχ′′(f1)/δχ′′(f4) = 2.8 δχ′(f1)/δχ′(f4) = 10.9 (4.23)

The χ′ harmonic content decreases with the frequency, while the χ′′ harmonic

Figure 4.17: Dissipative response at T = 1K (red line), T = 0.67K (blue
line) and T = 0.55K (light blue line) for f = 365MHz.
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(µA/Φ0) T = 0.67K T = 1K

δχ′ 22.9 6.87

δχ′′ 39 6.98

δχJ(T ) = 4π Ic/Φ0 234 76.6

Table 4.3: Comparison between the amplitude of the zero frequency response
δχJ and the oscillation amplitudes δχ′ and δχ′′, for T = 1K and T = 0.67K.

r21 T = 0.67K T = 1K
χ′ 0.33 0.18
χ′′ 0.19 0.26

Table 4.4: Ratio between the second and the first harmonic of the in-phase
and out-of-phase response at T = 0.67K and T = 1K.

content remains stable, with a ratio between the second and the first har-
monic of r21 ∼ 0.2.

Figure 4.18: In-phase response at T = 0.67K for f1 = 365MHz (blue line)
and f4 = 1.5GHz (green line).
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To find the important relaxation times, we have traced the oscillation
amplitudes δχ′ and δχ′′ as a function of the frequency, at the temperatures
T = 0.67K and T = 1K (Fig. 4.20). We find that the frequency dependence
follows a simple Debye relaxation law:

δχ′(ω) = δχ(0, T )
1

1 + (ωτ)2
(4.24)

δχ′′(ω) = δχ(0, T )
ωτ

1 + (ωτ)2
(4.25)

χ(0, T ) is the zero frequency, temperature dependent, δχ′, that we expect
equal to δχJ , and τ is the relaxation time.
To confirm the values of τ deduced from the δχ′(ω) and δχ′′(ω) fits, we also

plot in Fig. 4.21 the ratio δχ′′/δχ′. This ratio is proportional to τ in a Debye
relaxation model, and doesn’t depend on L′, Lr and kn, parameters that are
all subject to an error.
The found fitting parameters are:

Figure 4.19: Out-of-phase response at T = 0.67K for f1 = 365MHz (blue
line) and f4 = 1.5GHz (green line).
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• T = 0.67K τ = 0.6± 0.2ns δχ(0) = 70µA/Φ0 = 3.3δχJ

• T = 1K τ = 0.6± 0.2ns δχ(0) = 24µA/Φ0 = 3.2δχJ

The δχ(0) found are of the same order of magnitude than δχJ , but they are
reduced by the same factor 3.2, due probably to the uncertainty of determi-
nation of the SQUID-resonator coupling. It is however worthwhile to note
that

χ(ω = 0, T = 0.67K)

χ(ω = 0, T = 1K)
=
χJ(T = 0.67K)

χJ(T = 1K)
(4.26)

The relaxation time τ is in the nanosecond range, and doesn’t vary with
temperature. When comparing it to the diffusion time, we find τ = 7.5 τD.

Figure 4.20: Amplitudes of the in-phase and out-of-phase response δχ′ (red
circles) and δχ′′ (blue squares) as a function of frequency at T = 0.67K and
T = 1K. The fits are Debye relaxation laws with relaxation time τ = 0.6ns.



4.6 Theoretical predictions 139

Figure 4.21: Ratio δχ′′/δχ′ as a function of ω = 2πf for T = 0.67K (blue
squares) and for T = 1K (red circles). The black line has a slope of 0.6ns.

4.6 Theoretical predictions

In this section we discuss a possible explanation of the χ′ and χ′′ flux depen-
dence in the linear regime.
The current flowing in a SNS junction is carried by the Andreev levels. Each
Andreev level of energy εn carries a current

in = −∂εn
∂Φ

(4.27)

where Φ is the flux through the ring.
We write for simplicity the current in the case of a discrete spectrum, but
the same can easily be transposed to a continuum spectrum.
The flux dependent Josephson current at equilibrium sums the contributions
of each Andreev level:

Ieq =
∑
n

pn(εn(Φ)) in(Φ) (4.28)
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where pn is the level occupation factor.
The equilibrium response is thus:

χ(ω = 0) =
∂Ieq
∂Φ

=
∑
n

in
∂pn
∂Φ

+
∑
n

pn
∂in
∂Φ

(4.29)

=
∑
n

in
∂pn
∂εn

∂εn
∂Φ

+
∑
n

pn
∂in
∂Φ

(4.30)

When exciting an SNS junction with a finite frequency flux modulation,
we affect both the energy levels and their populations.
We should then detect two characteristic times: the response time of the
distribution function pn appearing explicitly in the current expression, and
the diffusion time of Andreev pairs. In fact, if the pairs don’t have the time
to cross the normal wire during the measuring time, the adiabatic approxi-
mation fails. The Andreev bound states aren’t then defined any more, and
the density of states becomes out-of-equilibrium. In this case, the Josephson
current is affected through the currents in.
The response of the distribution function is well understood (see sec. 4.6.1).
The response time is given by the inelastic time τin, the minimum between the
electron-phonon time τe−ph and the electron-electron time τe−e. We estimate
that at T = 1K the inelastic time in our golden wires is about τin ∼ 5 10−8s,
which corresponds to a frequency fin ∼ 3MHz, much smaller than the fre-
quency range of the resonator.
We then expect the populations of our normal wires to be completely frozen,
and the only relaxation we should observe is that of the density of states.

4.6.1 Distribution function relaxation time

In this section we derive the response of the current through a SNS junction
to a small phase modulation at a frequency of the order of the distribution
relaxation time, i.e. the inelastic time.
In the relaxation time approximation, the population pn of the nth level
obeys:

dpn
dt

= − 1

τin
(pn − pn,eq) (4.31)

where pn,eq is the equilibrium Fermi-Dirac distribution at the energy εn:

pn,eq =
1

1 + eεn/(kBT )
(4.32)
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and τin is for simplicity independent of n.
If the phase difference ϕ across the junction is modulated with a small mod-
ulation amplitude δϕ:

ϕ(t) = ϕdc + δϕ ei ω t (4.33)

We have:

in(ϕ) = in(ϕdc) +
∂in
∂ϕ

δϕ ei ω t (4.34)

pn,eq(ϕ) = pn,eq(ϕdc) +
∂pn,eq
∂ϕ

δϕ ei ω t (4.35)

pn = pn(ϕdc) + δpn e
i ω t (4.36)

Introducing the expressions 4.34, 4.35 and 4.36 in eq. 4.31, we obtain:

i ω δpn e
i ω t = − 1

τin
ei ω t

(
δpn −

∂pn
∂ϕ

δϕ

)
(4.37)

So that the distribution function variation δ pn due to the high frequency
phase excitation is:

δ pn =
1

1 + i ω τin

∂pn
∂ϕ

δϕ (4.38)

Using the relation between the phase and the flux ϕ = −2 πΦ/Φ0, we find
that:

δ pn =
1

1 + i ω τin

∂pn
∂Φ

δΦ (4.39)

The linear response of the current is then:

χ =
∂I

∂Φ
=
∑
n

in
∂pn
∂Φ

1

1 + i ω τin
+
∑
n

pn
∂in
∂Φ

(4.40)

When the frequency is of the order of the inelastic rate, the populations can’t
follow the excitation, and an out-of-phase, dissipative response appears. This
dissipative response is proportional to −ω τin/(1 + ω2 τ 2

in).

4.6.2 Current response for ω τin ∼ 1

As we have seen in the previous section, when the excitation frequency ap-
proaches the inelastic rate, we have to take into account the relaxation of the
populations. If we consider for the moment that the Andreev levels respond
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instantly to the excitation, the only relaxation time is the inelastic time.
The current response χ becomes:

χin =
∑
n

in
∂pn
∂εn

∂εn
∂Φ

1

1 + i ω τin
+
∑
n

pn
∂in
∂Φ

(4.41)

and, since in = −∂εn/∂Φ,

χin = −
∑
n

i2n
∂pn
∂εn

1

1 + i ω τin
+
∑
n

pn
∂in
∂Φ

(4.42)

At zero frequency, the response is:

χ(ω = 0) =
∑
n

i2n
∂pn
∂εn

+
∑
n

pn
∂in
∂Φ

(4.43)

= −2π Ic(T )

Φ0

cos

(
2πΦ

Φ0

)
(4.44)

Since we can easily calculate the zero frequency response, it can be useful to
express χin as a function of χ(ω = 0):

χin = χ(ω = 0) +
i ω τin

1 + i ω τin

∑
n

i2n
∂pn
∂εn

(4.45)

The in-phase and out-of-phase responses are then:

χ′in = χ′(ω = 0) +
ω2 τ 2

in

1 + ω2 τ 2
in

∑
n

i2n
∂pn
∂εn

(4.46)

χ′′in =
ω τin

1 + ω2 τ 2
in

∑
n

i2n
∂pn
∂εn

(4.47)

If τ−1
in << ω, the populations are completely frozen, and the response is:

χin = χ(ω = 0) +
∑
n

i2n
∂pn
∂εn

= χ(ω = 0)− F (Φ, T ) (4.48)

where

F (Φ, T ) = −
∑
n

i2n
∂pn
∂εn

(4.49)

F (Φ, T ) can be rewritten in the continuous spectrum limit for kB T >> ETh:

F (Φ, T ) =

∫
1

kB T ρ(ε)
j2(Φ, ε)dε (4.50)
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where j(Φ, ε) is the current density and ρ(ε) the density of states. The distri-
bution function pn is replaced by its high temperature dependence 1−ε/kB T ,
so that ∂p/∂ε ∼ −1/kB T .
This expression, valid in the limit kB T & 5ETh and ~ω ∼ ETh, was calcu-
lated using Usadel equations by T. Heikkila and P. Virtanen.
Fig. 4.22 shows the normalised χ(ω = 0), the calculateed F (Φ) and the χ′in
resulting from eq. 4.47 for T = 8ETh and ω τin ∼ 100. Since ω τin >> 1,
using the simpler eq. 4.48 would have given the same result.

We notice in Fig. 4.22 that the amplitude of χ is not modified even at

Figure 4.22: Normalised χ(ω = 0) (green line), F (Φ) (red line) and in-
phase high frequency response χ′in calculated from eq. 4.47 for T = 8ETh,
ω τin ∼ 100 and ωτA << 1.

ω τin >> 1, but a sharp peak appear at Φ0/2, where the minigap closes,
similar to the peaks we observe.
However, eq. 4.48 cannot reproduce our measurements. Indeed, at high
frequency compared to the inelastic rate, the relaxation of the populations
doesn’t predict any out-of-phase response, in contrast to our observations.
Moreover, the frequency dependence of δχ′ and δχ′′ observed in sec. 4.5.4
remains completely unexplained.
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This relaxation of the χ′ and χ′′ amplitude is described by a faster dynamics,
that we attribute to the relaxation of the Andreev levels, characterised by a
time τA. The high frequency response for ω >> τ−1

in and ω ∼ τA can then be
written phenomenologically:

χ = χin
1

1 + i ω τA
=
∑
n

pn
∂in
∂Φ

1

1 + i ω τA
(4.51)

We now compare the in-phase experimental response at finite frequency
with the theoretical expression 4.51. We assume that τA is the temperature
independent relaxation time τ = 0.6ns = 7.5 τD, that we have measured in
sec. 4.5.4.
In Fig. 4.23 we show the numerical calculations of eq. 4.51, compared to the
experimental χ′(Φ) and χ′′(Φ) measured for f1 = 365MHz at T = 0.55K,
T = 0.67K and T = 1K and for f4 = 1.5GHz at T = 0.67K.
Eq. 4.51 has been calculated for the ratios T/ETh = 5, T/ETh = 6 and
T/ETh = 9; these values are slightly below the experimental ones, but are
consistent with the error in the determination of the Thouless energy. The
amplitude of the theoretical simulations for χ′ has been rescaled by a factor
0.28, while the amplitude for χ′′ has been rescaled by a factor 0.36. We have
probably underestimated the amplitude of the experimental curves, due to
an error in the determination of the SQUID-resonator coupling parameters.

We observe that the agreement of the numerical calculation with the ex-
perimental χ′(Φ) is very good. Both the shape of the curves (their flux
anharmonicity) and the temperature and frequency dependences are well
reproduced. In particular, we see that the Andreev levels relaxation only
affects the amplitude of the response, while the harmonic content remains
unchanged, like in our phenomenological model.
The χ′′(Φ) curves are also well reproduced, with the exception of the response
at T = 1K.

In conclusion, the model presented predicts strongly anharmonic χ′(Φ)
and χ′′(Φ) at high temperatures kB T > 5ETh, at frequencies larger than
the inelastic rate ω > τ−1

in and up to roughly the diffusion rate ω . τ−1
D .

To explain the frequency dependence, we introduced phenomenologically a
relaxation time τA ∼ τD associated to the relaxation of the current carried
by the Andreev levels.
We thus reproduce very well the shape and amplitude of the measured χ′(Φ)
and χ′′(Φ), up to f4 = 1.5GHz.
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4.7 High frequency out-of-equilibrium response

So far, we have discussed the linear response regime, where a small rf power
is injected in the resonator leading to a small flux modulation δΦ << Φ0.
In this section we present the response of SQUIDs SQAC-WAu-1 and SQAC-
WAu-2 when increasing the rf power, so that the flux modulation becomes
of the order and bigger than Φ0.
Because we are no longer in the linear regime, we cannot deduce easily χ′

and χ′′ from Fv and Qv. We present then in this section the field dependence
of the frequency shift Fv and the quality factor variation Qv.
When entering the non-linear regime, both Fv and Qv change abruptly their

dependence in flux.
As shown in Fig. 4.24 and 4.25, the dissipative response increases greatly at

Figure 4.23: χ′(Φ) and χ′′(Φ) for f1 = 365MHz at T = 0.55K, T = 0.67K
and T = 1K and for f4 = 1.5GHz at T = 0.67K (lines). Numerical
simulation for T/ETh = 5, T/ETh = 6 and T/ETh = 9 of eq. 4.51 (circles)
with τA = 7.5 τD. The amplitude of the theoretical simulations for χ′ has been
rescaled by a factor 0.28, while the amplitude for χ′′ has been rescaled by a
factor 0.36.
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Figure 4.24: Fv(Φext) for sample SQAC-WAu-1 at T = 0.82K, f =
365MHz and for P= 31 pW (Φac = 0.34 Φ0), P=63 pW (Φac = 0.48 Φ0)
and P=126 pW (Φac = 0.67 Φ0).

the odd multiples of Φ0/2. When raising the rf power, the dissipation peaks
become plateaus, centred around Φ0/2, and whose width increases with the
power (see 4.25). The in-phase response presents, also at the odd multiples
of Φ0/2, sharp negative peaks (see 4.24).

The non-linear effects appear in the dissipative and non-dissipative re-
sponse above a critical power Pc. We observe that:

• Pc decreases when increasing the excitation frequency. At high fre-
quency, even at the lowest powers the response is non-linear.

• Pc decreases when the temperature increases. Temperature and fre-
quency have a similar effect.

We detail in table 4.5 the evolution of Pc with the frequency, at T = 0.67K
and T = 1K, in sample SQAC-WAu-2. From f1 to f3, we never observe the
non-linear regime when increasing the power up to P = 5nW , correspond-
ing to one quantum flux through the ring. For frequencies above f6 we never
observe the linear regime, even when lowering the power below P = 0.3 pW .
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Figure 4.25: Qv(Φext) for sample SQAC-WAu-1 at T = 0.82K, f =
365MHz and for P= 31 pW (Φac = 0.34 Φ0), P=63 pW (Φac = 0.48 Φ0)
and P=126 pW (Φac = 0.67 Φ0).

We remark that the Thouless energy correspond to f = ETh/h = 1.88GHz,
which is roughly the observed frequency threshold for the non-linearity ap-
pearance at T = 0.67K and P ∼ 0.1 pW , which corresponds to a flux of
0.001 Φ0.

To explain approximately the dependence of Q with the magnetic flux,
it is necessary to remember that the minigap ∆̃ closes at the odd multiples
of Φ0/2. In the proximity of Φ0/2, the minigap is very small, and when
applying a small ac excitation the quasiparticles are pumped easily to the

f1 = 365MHz f4 = 1.5GHz f5 = 1.85GHz f6 = 2.2GHz

Pc(0.67K) > 5nW 0.28nW 1.9 pW < 0.4 pW

Pc(1K) > 5nW 2.8 pW < 0.6 pW < 0.4 pW

Table 4.5: Critical power for the appearence of non-linear effects in sample
SQAC-WAu-2 at T = 0.67K and T = 1K.
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conduction band, increasing the dissipation.
When increasing the excitation frequency, the energy transferred to the quasi-
particles increases, and the transitions are possible as soon as h f ∼ 2 ∆̃, and
not only at Φ0/2.
Moreover, the microwaves induce an important pair breaking of Andreev
pairs, that increases when the rf power and frequency increase, and that also
occur preferentially when the minigap is minimal.
Of course, these arguments give just an idea of the causes of the large dis-
sipation increase. In fact, on should note that the temperature is already
greater than the minigap.
In conclusion, as the frequency and the temperature increase, the SQUID
response is more and more non-linear. The dissipation, maximal around
the odd multiples of Φ0/2, is caused by the microwave-induced quasiparticle
transitions across the minigap and the Andreev pair breaking. A quantita-
tive description, however is still lacking.

We note that the observed Fv behavior recalls the strong modification
of the dc current/phase relation under microwave irradiation observed by
Strunk [25], where a strong second harmonic appears at the odd harmonics
of Φ0/2.
It is interesting to compare our data with the supercurrent-phase relation
Is(ϕ) found by Strunk (Fig. 4.26, right). Since Fv, the frequency shift, is re-
lated to the non-dissipative response of the SQUID, we trace the normalised
integral of Fv(ϕ) (Fig. 4.26, left), proportional to Is(ϕ).
What we find is very similar to the curve in the inset of Fig. 4.26 (right),
showing Is(ϕ) for T = 2.8K and f = 7.4GHz. The frequency and temper-
ature correspond to T = 10ETh/kB and f = 1.27ETh/h.
These ranges of temperatures and frequencies are compatible with ours:
T = 9.1ETh/kB and f = 0.2ETh/h.
What distinguish the curve in the inset from the others is the fact that the
excitation frequency for the inset is near a cavity resonance. The power ar-
riving to the sample is thus greater than for the other curves.
Thus, an important second harmonic appear when the power on the sample
crosses a certain threshold, which is exactly what we observe.

4.8 Conclusion

We have measured the current response of a long W-Au SNS junction to a
high frequency phase modulation for 6ETh < kB T < 11ETh and 0.2ETh <
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Figure 4.26: Left: normalised integral of Fv(ϕ) for Φac = 0.48 Φ0, T =
9.1ETh/kB and f = 0.2ETh/h. Right, inset: Is(Φ) for T = 10ETh/kB and
f = 1.27ETh/h [25].

h f < 1.37ETh.
To this end we have inductively coupled a SNS ring to a multimode super-
conducting resonator operating in a wide range of frequency.

The golden normal wire is fabricated directly on the resonator substrate,
and then contacted to a resonator line with W wires, deposited by Focused
Ion Beam irradiation of a tungsten gas. Thanks to the ductility of this fabri-
cation method, it was possible to modify many times the ring shape to adapt
its geometry to the measurement requirements.
The Nb multimode resonator provides the high frequency flux (and thus
phase) modulation in the ring, but is also a high frequency detector: by
measuring the resonance frequency shift and the quality factor variation of
the resonator as a function of the dc phase, we can access the in-phase and
out-of-phase response of the SQUID current.
Thanks to the high resonator quality factor Q ∼ 104, we are able to detect
extremely small variations of f and Q: δf/f ∼ 10−9 and δ(1/Q) ∼ 10−10.
We can then afford to measure a single SNS ac SQUID.

At low frequency, the supercurrent is expected to follow adiabatically
the ac excitation, so that the response, completely in phase, is equal to
∂IJ/∂Φ ∝ Ic cos(2πΦ/Φ0).
When increasing the frequency above the characteristic rates of the SNS
junction, we expect that the dynamic response also contains an out-of-phase,
dissipative, part.
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Indeed, we observe, besides the expected non-dissipative in-phase response
χ′, a sizable dissipative out-of-phase response χ′′, larger than χ′ in all the
temperature and frequency range explored.
As in the zero-frequency case, both χ′ and χ′′ exhibit Φ0 periodic flux oscilla-
tions. However, both quantities present a large harmonic content in a range
of temperature where the Josephson current is purely sinusoidal.
When increasing the temperature, the amplitude of χ′ decreases exponen-
tially like the critical current, similarly to the low-frequency case. The am-
plitude of χ′′, instead, decreases with the temperature twice as fast as χ′.
When increasing the frequency, the response amplitudes δχ′ and δχ′′ follow
a Debye relaxation law characterised by a relaxation time τA = 0.6± 0.2ns.

It is possible to reproduce theoretically the amplitude and flux depen-
dence of the in-phase response at f = 365MHz, assuming that the popula-
tions of the Andreev levels are frozen for frequencies larger than the inelastic
rate. We estimate τ−1

in ∼ 3MHz, a frequency much smaller than the lower
measurement frequency of our setup.
When increasing further the frequency, a second relaxation mechanism ap-
pears, possibly related to the relaxation of the current carried by the Andreev
levels. This second relaxation time τA is temperature independent, and of
the same order of magnitude than the diffusion time τA ∼ 7.5 τD.
Introducing phenomenologically this time in the theoretical predictions, we
have:

χ′(ω >> τ−1
in ) =

[∑
n

pn
∂in
∂Φ

]
1

1 + ω2 τ 2
A

(4.52)

where pn is the nth level occupation factor and in the current carried by the
nth Andreev level.
P. Virtanen and T. T. Heikkilä have calculated the previous expression in
the continuous limit using Usadel equations.
The agreement between the shape and amplitude of experimental curves and
the theoretical ones is very good.

Abandoning the linear response regime, we have also explored the out-of-
equilibrium response of the current.
We observe that non-linear effects appear above a critical power Pc, which
decreases when increasing the excitation frequency and the temperature: at
the highest frequencies and temperatures, the system is out of equilibrium
even at the at the lowest powers.
In the out-of-equilibrium regime, the dissipative response increases greatly
at odd multiples of Φ0/2. In proximity of Φ0/2, indeed, the minigap closes
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and even small excitation frequencies can transfer the quasiparticules to the
conduction band, increasing the dissipation. When increasing the rf power,
the dissipation peaks become plateaus of increasing width.
The in-phase response is also modified at the odd multiples of Φ0/2, with
the apparition of sharp negative peaks.
The observed behavior of the in-phase response recalls the dc current-phase
relation under microwave irradiation observed by C. Strunk: a strong second
harmonic appears at the odd multiples of Φ0/2 [25].
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Chapter 5

Details on the AC
measurements

In this chapter we detail the measurement of the in-phase and out-of-phase
response of a long SNS ac SQUID inductively coupled to a multimode super-
conducting resonator.
First, we calculate the variation of the resonator self inductance due to the
SQUID presence.
Then, we study how this self inductance variation modifies the resonance
frequency and the quality factor of the resonator.
We thus derive the relations 5.27 and 5.28, relying the resonance shift δ f
and the quality factor variation δ(1/Q) to the SQUID response χ = χ′+ iχ′′.
Finally, we detail the measurement circuit and how we extract δ f and δ(1/Q)
from the reflected power of the sample.

5.1 SQUID-resonator system - disconnected

ring

In this section we study the variation of the resonator self inductance caused
by the current flowing into the SQUID.
We begin modelling the resonator-ac SQUID system as a straight wire cou-
pled by mutual inductance to a ring (see Fig. 5.1).
We can neglect the folding of the resonator, since the resonator’s straight
segments are about 100 times larger than the ring size, and since the ring is
roughly in their middle. The magnetic field created by the resonator is then
perpendicular to the substrate and constant over the ring surface.
The small ac current ir flowing through the resonator creates an ac magnetic
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field, and thus an ac flux δΦ into the ring:

δΦ =M(x) ir + L δi (5.1)

where M(x) is the position-dependent, mutual inductance between the ring
and the resonator, L the self inductance of the ring and δi the current in the
SQUID induced by ir.
In the small excitation regime, δi = (∂i/∂Φ) δΦ, and the flux into the ring
is:

δΦ =
M(x) ir

1− L ∂i
∂Φ

(5.2)

The flux created on the resonator by the SQUID current is then:

δΦr =M(x) δi =M(x)
∂i

∂Φ
δΦ (5.3)

Figure 5.1: Schematics of the SQUID-resonator line system. a) Disconnected
ring. The resonator current ir produces by mutual inductance an ac flux δΦ
in the ring. A current δi flows in the ring of inductance L. b) Equivalent
circuit in the case of a connected ring. LK is the kinetic inductance of the
SNS junction, L′ is the self inductance of the resonator line included in the
ring and L// is the geometric inductance of the W wires.
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The changes of this flux can be seen as due to a self inductance variation of
the resonator δLr:

δΦr = δLr ir with δLr =
M(x)2 ∂i/∂Φ

1− L ∂i/∂Φ
(5.4)

The mutual inductance M(x) depends on the sample position. Indeed,
we can write the flux induced in the ring as:

δΦ =M(x) ir =M ir(x) (5.5)

where the current ir(x) in the resonator varies with the position. For instance,
for the first resonance frequency, the current is maximum in the centre. When
changing the frequency, the current amplitude at a given point of the resonant
line changes. We define

ir(x) = kn ir kn = sin(nπ x/Lr) (5.6)

where n label the harmonic number, x is the sample position and Lr the
resonator length.
We show in Fig. 5.2 the amplitude of the first seven harmonics as a function
of the position along the resonator; the ring is at x = 0.35Lr.

Since
∂i/∂Φ = χ = χ′ + i χ′′ (5.7)

we find:

δLr = k2
nM2 χ′ + i χ′′

1− L (χ′ + i χ′′)
(5.8)

with a real and imaginary part:

δLr = k2
nM2

[
χ′ − L (χ′2 + χ′′2)

(1− Lχ′)2 + L2 χ′′2
+ i

χ′′

(1− Lχ′)2 + L2 χ′′2

]
(5.9)

5.2 SQUID-resonator system - connected ring

In this section we check that the results found in the previous section also
hold if the SQUID is not, as supposed before, isolated from the resonator
but is, as in reality, directly connected to one resonator line.
We consider the system as the sum of different inductances, as shown in
Fig. 5.1 b). L′(x) is the position-dependent, self inductance of the resonator
portion included in the ring, L// is the geometrical inductance in parallel
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Figure 5.2: Amplitude of the resonator current ir(x) as a function of the posi-
tion along the resonator, for the first seven resonances. The sample position
is indicated by a dotted line.

with the resonator and LJ , is the Josephson inductance of the SNS junction.
From the AC and DC Josephson effect:

V =
~

2 e
ϕ̇ =

~
2 e

1

Ic cos(ϕ)

dI

dϕ
= LJ

dI

dϕ
(5.10)

so that the Josephson inductance is:

LJ =
~

2 e

1

Ic cos(ϕ)
= −

(
dI

dΦ

)−1

(5.11)

The total inductance of the circuit is:

1

Ltot
=

1

L′(x)
+

1

L// + LK
(5.12)

The inductance relative change due to the SQUID is then:

Ltot − L′(x) = − L
′(x)2

L+ LK
(5.13)
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where L = L// +L′(x) is the geometrical inductance of the SQUID. Writing
the explicit expression of the kinetic inductance we have:

Ltot − L′(x) = L′(x)
2 ∂i/∂Φ

1− L ∂i/∂Φ
(5.14)

The flux in the resonator line is thus:

δΦr = (Ltot − L′(x)) ir = δLr ir (5.15)

and, using as in the previous section the relation L′(x) = kn L′ we find:

δLr = k2
n L′2

∂i/∂Φ

1− L ∂i/∂Φ
(5.16)

which is exactly eq. 5.4 with L′ replacing M. We have also seen in sec.
D.2 that the mutual inductance M and the self inductance L′ have similar
numerical values.

5.3 Resonance changes due to the SQUID

In this section we show how the variation of the resonator self inductance
δLr enters into the resonance frequency and quality factor. Since the SQUID
response is generally complex, δLr is also complex: δLr = δL′r + i δL′′r .
We model the resonator as a parallel RLC circuit with impedance

1

Z
=

1

R
+

1

i ωL
+ i ω C (5.17)

Z =
Rω2L2 + i R2ωL(1− ω2 LC)

ω2L2 +R2(1− ω2 LC)
(5.18)

At the resonance the imaginary part of the impedance is zero; the resonance
frequency is then:

ω0 =
1√
LC

(5.19)

The quality factor is defined as the ratio between the stored energy and the
power dissipated in a time 1/ω. This gives:

Q = R

√
C

L
(5.20)
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A small change in the real part of the resonator inductance δL′r changes the
circuit inductance by δL, and shifts the resonance frequency f = ω0/2π:

δL′r
Lr

= −2
δω0

ω0

= −2
δ f

f
(5.21)

A small change in the imaginary part of the inductance δL′′r corresponds to
a small resistance r, added in series to the inductance, whose value is:

r = i ω (i δL′′r) = −ω δL′′r (5.22)

This small resistance r changes the circuit resistance R by:

δR =
R2

ω2 L2
r (5.23)

and thus the inverse quality factor becomes:

δ

(
1

Q

)
= − 1

Q

δR

R
+

1

2Q

δL
L

(5.24)

Introducing eq. 5.23 and 5.22 in the previous equation we obtain:

δ

(
1

Q

)
=
δL′′r
Lr

+
1

2Q

δL′r
Lr

(5.25)

The second term of this equation can be neglected, since in our case Q > 103

and L′′r & L′r, so that finally:

δ

(
1

Q

)
=
δL′′r
Lr

(5.26)

Summarising, the resonance frequency f and the quality factor Q change
according to:

−2
δ f

f
=
δL′r
Lr

= k2
n

L′2

Lr
χ′ − L (χ′2 + χ′′2)

(1− Lχ′)2 + L2 χ′′2
(5.27)

δ

(
1

Q

)
=
δL′′r
Lr

= k2
n

L′2

Lr
χ′′

(1− Lχ′)2 + L2 χ′′2
(5.28)
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5.4 Measurement of δ f/f and δ(1/Q)

The schematics of the measurement setup is traced in Fig. 5.4 and Fig. 5.6.
We begin by summarising the action of each component of the measurement
circuit:

• Splitter The splitter splits a rf signal in half; the signal of each branch
then loses 3 dBm.

• Magic T The magic T is a four port device where each port is
connected to the two nearest ports (see Fig. 5.3 (a)).
In our circuit, the excitation enters the magic T in 1, and is splitted
into the ports 2 and 4; the wave going to 4 is dephased by π and
directed into a 50Ω impedance, while the wave going to 2 is directed
to the sample. The signal reflected by the sample is sent back to 1
towards the generator, but is greatly reduced by the attenuators; the
signal reflected to 3, added to the one reflected by the 50Ω, which is
assumed to be zero, enters the measurement circuit.
For f > 1.2GHz, the magic T is replaced by a directional coupler, a
three terminal device where the transmission between the ports IN and
OUT is optimal, while an attenuator is placed between IN and CPL
(see Fig. 5.3 (b)).
In our circuit, the rf excitation enters in CPL, is attenuated, exit in IN
and goes to the sample. The power reflected by the sample enters the
directional coupler in IN and exits in OUT.

Figure 5.3: Magic T (a) and Coupler (b) configuration.

• Mixer The mixer multiplies two high-frequency signals.
In our circuit, the mixer multiplies part of the rf generator excita-
tion with the high frequency sample response to that excitation. If we
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write the generator ac voltage as V0 e
i ω t+ϕ and the sample response as

V1(ω) eiω t+ϕ
′
, with V1 = V ′1 + i V ′′1 complex, their product is:

Vout =Re

(
V0 e

i ω t+ϕ

)
∗Re

(
V1 e

iω t+ϕ′
)

= (5.29)

1

2
V0 V

′
1 [cos(2ω t+ ϕ+ ϕ′) + cos(ϕ− ϕ′)] (5.30)

−1

2
V0 V

′′
1 [sin(2ω t+ ϕ+ ϕ′)− sin(ϕ− ϕ′)] (5.31)

By dephasing the reference generator signal before entering the mixer,
we can set the two waves in-phase (ϕ = ϕ′), maximising the dc output:

Vout =
1

2
V0 V

′
1 [cos(2ω t+ 2ϕ) + 1]− 1

2
V0 V

′′
1 [sin(2ω t+ 2ϕ)] (5.32)

Filtering the high frequency part of Vout we obtain a dc signal propor-
tional to the sample response:

Vout,dc =
1

2
V0 V

′
1 (5.33)

• Integral-Proportional The Integral-Proportional circuit multiplies
and integrates the input signal Ain(t), giving a output:

Aout(t) = P Ain(t) + I

∫ t

0

Ain(t′)dt′ (5.34)

where the parameters P and I can be adjusted.

Now that we have introduced the principal components of the measure-
ment circuit, let’s follow the signal step by step.
The rf generator output is a voltage oscillating at a resonance frequency of

the resonator (fn = n f1 = n×365MHz). The output power is the maximum
permitted by the generator, i.e. +13 dBm.
We apply a frequency modulation of amplitude δω and frequency ω1/ 2π to
gain in sensitivity.
The output voltage of the splitter is:

Vg(t) = V0 e
i(ωn t+ δω

ω1
sin(ω1 t)) (5.35)

ωn = 2πfn ∼ 10GHz and ω1 ∼ 30− 80 kHz.
δω is chosen to be half the resonance width; δω ∼ 100 kHz at ω1, and in-
creases up to 1GHz at the highest frequencies.
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After the splitter, one half of the excitation, attenuated between 90 dB and
110 dB (depending on the measurement temperature and frequency), is di-
rected to the sample. The other half is dephased and enters the mixer.
The voltage reflected by the sample is proportional to the reflexion coefficient

Γ =
Z − Z0

Z + Z0

(5.36)

where Z is the impedance of the resonator and the coupling capacitor, and
Z0 = 50 Ω is the characteristic impedance of the coaxial cables.
The voltage reflected by the resonator is:

Vr(t) = V0 Γ(ω, ω1) e
i(ωn t+ δω

ω1
sin(ω1 t)) (5.37)

In the mixer, this voltage is multiplied with Vg(t), dephased to be in-phase
with the sample reflexion.
The dc component of the mixer output is proportional to the real part of the
reflexion coefficient Γ′:

V1 =
1

2
V 2

0 Γ′(ω, ω1) (5.38)

where Γ′ oscillates at a frequency ωn, modulated at ω1 with a small amplitude
δω.
Since δω << ωn, we can develop V1:

V1 = V0

[
Γ′(ωn) +

∂Γ′

∂ω
(ωn) δω cos(ω1 t) +

1

2

∂2Γ′

∂ω2
(ωn) δω2 cos(ω1 t)

2

]
(5.39)

Figure 5.4: Measurement circuit from the rf generator to the mixer output.
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where cos(ω1 t)
2 = 1/2 (1 + cos(2ω1 t)).

A Lock-in working at ω1 selects (∂Γ′/∂ω)(ωn), which is proportional to δf .
A Lock-in working at 2ω1 selects (∂2Γ′/∂ω2)(ωn),which is proportional to Q2.

In the under-coupled regime, the coupling capacitor has an impedance
larger than that of the resonator, to isolate the resonator from the environ-
ment. In this case, the variations of the reflection coefficient Γ are propor-
tional to the resonator impedance Zr.
We can write the real part of the resonator impedance near the resonance
using eq. 5.18:

Z ′r = R
1

1 + R2

ω2/ω2
n
(1− ω2LC)2

∼ R

[
1− 4Q2

(
ω − ωn
ωn

)2]
(5.40)

where the approximation to a Lorentzian is valid for δωn/ωn << Q−1, which
is our case since δωn/ωn < 10−6 and Q−1 > 10−4.
At the resonance, the real part of the impedance is minimal, and its derivative
vs. ω is zero. Near the resonance the first derivative is proportional to the
resonance frequency shift:

δŻ ′r = −8R
Q2

ω2
n

(ω − ωn) (5.41)

The variation of the second derivative of Zr is instead proportional to the
quality factor variation:

δZ̈ ′r = −8R
Q2

ω2
n

(5.42)

and thus:
δZ̈ ′r
Z̈ ′r

= 2
δQ

Q
(5.43)

The output of the Lock-in working at ω1, which is proportional to the
resonance frequency shift ω − ωn, is sent to the proportional-integral, whose
output controls the generator frequency. Thanks to this retroactive circuit,
the generator changes its output frequency to follow the resonance.
The proportional-integral parameters P and I control the quality of the
retroactive circuit: if P is too big, the generator frequency oscillates around
the resonance frequency without ever reaching it, while if I is too big, the
time needed to reach the resonance frequency is very long, and the generator
can’t follow the resonance frequency changes.
Using the retroactive circuit, we can directly measure, without any cali-
bration, the resonance frequency shift: we just look at the change in the
generator frequency needed to be at resonance again.
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Figure 5.5: Effect of a resonance frequency shift and quality factor varia-
tion in the (a) real part of the resonator impedance Z ′r(ω), in the (b) first
derivative of Z ′r(ω) and in the (c) second derivative of Z ′r(ω).

Figure 5.6: Retro-action circuit that permits to the generator to follow the
resonance frequency changes caused by the magnetic flux into the SQUID.
The blue circle corresponds to the circuit detailed in Fig. 5.4
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Chapter 6

Conclusions

In this thesis we have addressed the dynamics of Superconductor/Normal
metal/Superconductor long junctions.
A wide range of samples were used, in which we varied the superconducting
and normal metals, the length and geometry of the normal wire, and the N-S
interfaces.
In order to explore the dynamics of such junctions, we have imposed a high
frequency excitation in two different ways. In a first set of experiments we
have modulated the bias current, and observed the sharp transitions between
the superconducting and the normal state in the V(I) characteristic, while in
a second set of experiments we have modulated the phase difference across
an isolated junction, and observed the current response. In the first case, the
measurement was in a strongly non-linear regime, while in the second case
we explored both the linear and the non-linear response regimes by varying
the phase modulation amplitude.
The aim of these experiments is to understand which microscopic mechanisms
govern the dynamics of a long coherent normal wire in which superconducting
correlations penetrate completely. A precious insight can be gained by study-
ing the relevant time scales. Many time-scales may indeed play a role: the
inelastic scattering times (the electron-electron time τe−e and the electron-
phonon time τe−ph), the diffusion time τD, the dephasing time τϕ...
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6.1 Relaxation times

6.1.1 Inelastic scattering time

In both experiments, two relevant times emerge: the inelastic relaxation time
and the diffusion time.
In the current-biased experiment, we observe that the junction is at equi-
librium and follows adiabatically the excitation for frequencies below the
electron-phonon rate (the inelastic rate at the measurement temperatures).
This is indirectly confirmed by the phase-biased experiment, where at fre-
quencies above the inelastic rate, but lower than the other characteristic
rates, the junction is already out-of-equilibrium.
When we impose a small amplitude phase modulation faster than the inelas-
tic rate, the current response develops an imaginary, dissipative component.
Thus the current, far from being non-dissipative and sinusoidal with the
phase, as in the equilibrium case, has now a dissipative contribution and
depends non-sinusoidally on the phase.
We can understand the large harmonic content in the current-phase relation
at high frequency by considering that the occupation of the Andreev levels is
frozen. Indeed, when varying the phase, the energy of Andreev levels change,
and quasiparticles relax to the new Fermi distribution. But when f > τ−1

in

they have no time to relax, and the distribution remains frozen at its dc
value.
Thus, a frequency larger than the inelastic scattering rate prevents the energy
relaxation, and results in an out-of-equilibrium, modulation-independent An-
dreev states population.
A similar effect is also observed in the current-biased experiment. In this
case, when the frequency exceeds the inelastic scattering rate, the switching
from the normal to the superconducting state is strongly affected. This can
be attributed to a global heating of the junction. Indeed, when switching to
the normal state, the junction becomes resistive and is heated by the Joule
power. If the bias current, and thus the injected Joule power, varies faster
than the inelastic scattering rate, quasiparticles cannot evacuate the excess
heat fast enough to be able to switch back in the superconducting state when
the current becomes lower than the equilibrium retrapping current.
Thus, when the frequency is larger than the inelastic scattering rate, because
of the lack of energy relaxation, the distribution function is a Fermi function
with an effective temperature higher than the bath temperature.
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6.1.2 Diffusion time

A second important time scale is the diffusion time. This ’macroscopic’ time
is associated with the length of the normal wire, since it is defined as the
time quasiparticles take to cross the junction.
We observe in the current-biased experiment that for frequencies larger than
the diffusion rate, the critical current is strongly modified, while the retrap-
ping current is completely unaffected. Indeed, the critical current is markedly
increased in the whole range of temperatures studied.
A similar effect is observed in superconducting bridges, but only for temper-
atures near the superconductor’s transition temperature. The enhancement
being due in that case to a non-equilibrium quasiparticles distribution, the
characteristic frequency is given by the inelastic rate.
In the case of long SNS junctions the situation is more complicated, as mi-
crowaves generate not only a non-equilibrium quasiparticles distribution, but
also modify the density of states. The amplitude of the minigap in the nor-
mal wire, proportional to the diffusion rate, sets then the critical frequency
for the enhancement.
Excitations faster than the diffusion rate have also a strong effect in the
phase-biased experiment: the current response decays indeed on the diffusion
time-scale. This relaxation time could then be interpreted as the response
time of the Andreev levels. Indeed, Andreev levels are the eigenstates of the
system for a given phase difference across the wire. The information about
the phase boundaries conditions, however, is not instantaneously transmit-
ted, since it takes a time τD to diffuse across the wire. This delay, the response
time of Andreev levels, could be responsible for the current relaxation.

6.2 Hysteresis

A topic which profited from the two different experiments in parallel is the
interpretation of the hysteresis in V(I) curves.
We examined two possibilities for the hysteresis of the switching current be-
tween the normal and the superconducting state: heating effects and phase
dynamics.

6.2.1 Heating

We suppose in this case that the junction is intrinsically non-hysteretic. The
retrapping current is then equal to the critical current.
When the sample switches from the superconducting to the normal state,
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the resistance goes abruptly from zero to a finite value, the sample dissipates
a Joule power PJ = RI2 and its electronic temperature Te increases. The
Joule power can be evacuated to the substrate by phonon emission.
Usually, the phonon cooling power is modeled as P = ΣV (T 5

e − T 5
ph), where

Tph is the phonon temperature, V the normal wire volume and Σ a material
dependent parameter.
By equating Joule power and phonon cooling power, the electronic temper-
ature is deduced. Using the experimental Ic(T ) curve, one can then find
Ir = Ic(Te).
This simple model reproduces well the nearly constant temperature depen-
dence of Ir, but predicts retrapping current amplitudes too small by a factor
two compared to the measured ones.
We then examine the case of a sixth power law for the phonons cooling power:
P = Σ′ V (T 6

e − T 6
ph). Such a law was indeed first predicted by A. Schmid,

and then measured by J. T. Karvonen et al. in 57 nm thick Au wires and
Cu wires thinner than 140 nm.
Recalculating the temperature dependence of the retrapping current within
this model leads to a very good agreement with the experimental Ir(T ) in
samples SQ-NbAu-L, SQ-NbAu-S and WAu-Sq. Moreover, the fitting pa-
rameters Σ′ are consistent with those found by J. T. Karvonen.
However, when trying to fit the retrapping current dependence in samples
NbAl-L and NbAl-S, neither the fifth power law nor the sixth power law give
the good temperature dependence, Ir decreasing slower than predicted.
In conclusion, the heating model is satisfactory for the Nb-Au SQUIDs and
the W-Au wires, if we accept the unusual sixth power law. It is not clear
though why measurements of the sixth power law are so rare in standard
metal films.
In the case of Nb-Al wires, the heating model does not work. This is also
confirmed by the retrapping current behavior, when the sample is irradiated
by microwaves with f > τ−1

D . Indeed, while the critical current is strongly
enhanced over the whole temperature range, the retrapping current is com-
pletely unaffected. Whereas if the relation Ir = Ic(Te) were valid, the retrap-
ping current should also be enhanced by the excitation. It is thus necessary
to consider a different explanation for hysteresis in Nb-Al samples.

6.2.2 Phase dynamics

SIS junctions with a high quality factor present an hysteresis which is the re-
sult of phase dynamics. The phase, fixed in the superconducting state, turns
in the resistive state at a velocity proportional to the voltage. To switch
from the normal to the superconducting state, the phase has to decrease its
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velocity. The phase deceleration is related to the environment properties
through the RC time and the plasma frequency ωp: for a large quality factor
Q = RC ωp, the deceleration is small and the hysteresis is large.
Since SIS and SNS junctions often behave similarly, we can try to apply this
model also to SNS junctions. To do this, we have to replace the RC time and
the plasma frequency with the proper characteristic times in SNS junctions.
We find that it is possible to explain the hysteresis in Nb-Al samples when
replacing the RC time with the electron-phonon time τe−ph and the plasma
frequency ωp with a temperature-independent, size-dependent frequency pro-
portional to the diffusion rate τ−1

D .
Unfortunately, we could not check this hypothesis in the other samples, since
we lacked an independent measurement of the electron-phonon time.

6.2.3 Intrinsic hysteresis in presence of heating

Finally, the hysteresis could result from a combination of the two phenom-
ena described above: SNS junctions could be intrinsically hysteretic, but the
hysteresis could be increased by heating effects.
In the case of Nb-Al samples, then, the hysteresis we observe would be mostly
intrinsic, and thus explainable with the phase dynamics model controlled by
the two times τe−ph and τD. At the measurement temperatures, between 1.5
K and 4 K, the heating would be indeed a small effect.
In the case of Nb-Au or W-Au samples, which in contrast were measured be-
tween 50 mK and 1 K, the main effect would be due to heating, even in the
presence of an intrinsic hysteresis. We confirmed with numerical simulations
that very similar hysteresis are obtained at low temperature from heating
only, or from heating added to an intrinsic hysteresis.
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Appendix A

SQUID Phase-Flux relation

A.1 Meissner effect

The macroscopic wave function of a superconducting ring is ψ =
√
ns e

i θ(~r).

The current density ~j in the ring is:

~j = 2e ψ∗ ~v ψ =
2e ns
2m

(~~∇θ − 2e ~A) (A.1)

From eq. A.1 we derive the second London equation:

~∇×~j = −(2e)2 ns
2m

~B (A.2)

Using Maxwell equation ~∇× ~B = µ0
~j, we find

~∇× (~∇× ~B) = µ0
~∇×~j = −(2e)2 ns

2m
~B = − 1

λ2
L

~B (A.3)

and
~∇× (~∇× ~B) = −~∇2 ~B = − 1

λ2
L

~B (A.4)

The magnetic field penetrates then in the superconductor only over a length
λL, called the London penetration length.

A.2 SIS SQUID

We now interrupt the superconducting ring with a thin insulating layer. If
the ring is wide enough, far from the ring borders the magnetic field cannot
penetrate, and ~B and ~j are zero. Then, from eq. A.1:

~~∇θ = 2e ~A (A.5)
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We now integrate over a path far from the borders (see Fig. A.1). We can
neglect the field in the insulating layer, since the layer is very thin. We then
obtain: ∫ 2

1

~A · d~l ≈
∮

~A · d~l = Φ (A.6)∫ 2

1

~∇θ · d~l = θ2 − θ1 (A.7)

So that the relation between the phase difference δ and the magnetic flux in
the ring Φ is

δ = θ1 − θ2 = −2e

~
Φ = −2π

Φ

Φ0

(A.8)

Figure A.1: Schematics of an SIS ring in presence of a magnetic field.
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Runge Kutta method

Problems involving ordinary differential equations of order N can be reduced
to the study of a system of N first-order differential equations of the type:

dyi(x)

dx
= fi(x, y1...yN) (B.1)

In initial value problems, the yi values are known at a initial point x0, and
the aim is to find the yi at a final point xf .
The simplest solution is to define small discrete steps ∆x and ∆yi, and to
solve at the first order the N equations. This is called the Euler method.

xn+1 = xn + ∆x = xn + h (B.2)

yi(xn + h) = yi(xn) + h fi(xn, yi(xn)) +O(h2) (B.3)

However, the accuracy of this method is moderate.
Runge-Kutta methods are based on the Euler method, but they use interme-
diate steps to evaluate the derivative one or more times in the interval ∆x,
so to decrease the error [46].
We demonstrate here the second-order, or midpoint, Runge-Kutta method,
which has an error O(h3).
In the following we neglect the index i in yi and fi for simplicity.
As we have seen, at the first order we have:

y(xn + h) = y(xn) + h f(xn, y(xn)) (B.4)

Instead of using the derivative evaluated in xn, we use to determine y(xn+h)
the derivative of the middlepoint xn + h/2:

y(xn +
h

2
) = y(xn) +

h

2
f(xn, y(xn)) +

h2

8
f ′(xn, y(xn)) +O(h3) (B.5)
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and

y(xn+h) = y(xn+
h

2
)+
h

2
f(xn+

h

2
, y(xn+

h

2
))+

h2

8
f ′(xn+

h

2
, y(xn+

h

2
))+O(h3)

(B.6)
Developping

f(xn, yn) = f(xn +
h

2
, y(xn +

h

2
))− h

2
f ′(xn +

h

2
, y(xn +

h

2
)) (B.7)

we finally obtain:

y(xn + h) = y(xn) + h f(xn +
h

2
, y(xn +

h

2
)) +O(h3) (B.8)

When increasing the number of intermediate evaluations, the error decreases.
The most used Runge-Kutta method is the fourth-order one, which has an
error O(h5).



Appendix C

Resonance dependence on
temperature and magnetic field

To describe the resonance frequency dependence on temperature and mag-
netic field, we model the superconducting resonator by a circuit formed by
the geometrical inductance of the line L and the capacitance between the
two wires C. When applying a rf excitation, a dissipative density of current,
generated by the ac electric field, adds to the non-dissipative one. In this case
a surface resistance appears; its magnitude depends on the normal electron
density nn, on the penetration depth λL and on the excitation frequency f
[62]:

Rs ∝ nn λ
3
L f

2 (C.1)

nn and λL depend on the temperature as nn ∼ e−∆/kB T and λL ∼ 1/
√

1− e−∆/kB T ,
where ∆ is the superconductor gap.
For H << Hc, where Hc is the critical magnetic field of Nb, λL and nn de-
pend linearly on the magnetic field.
If we add this resistance in series with the inductance, the resonance fre-
quency changes:

f

f0

=

√
1− C

L
R2 (C.2)

so that the resonance frequency decreases parabolically when the resistance
is increased by the temperature (bigger nn), by the magnetic field (bigger
λL) or by the frequency.

The quality factor is inversely proportional to the dissipation. At low
temperature, the most important source of dissipation affecting the quality
factor is the presence in the substrate of magnetic impurities: substrates of
sapphire or silicon dioxide were thus chosen because of their low impurities
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Figure C.1: Normalised variation of the first resonance frequency as a func-
tion of the magnetic field at T=50mK

content.
These impurities are stable in our magnetic field and temperature range. The
Q-factor, however, depends on frequency, temperature and magnetic field.
This can be explained as due to the rf biasing of the resonator. As we
have seen before, the high frequency bias of the resonator produces a surface
resistance Rs, that increases with the frequency, the temperature and the
magnetic field. We then expect for 1/Q a dependence similar to that of Rs.



Appendix D

Self inductance and mutual
inductance calculation

D.1 AC ring self inductance

We have calculated the ring self inductance from the following formula, de-
scribing the high frequency self inductance of a rectangular ring with sides a
and b of wire radius r:

L =
µ0

2π

[
2a ln

(
2a

r

)
+ 2b ln

(
2b

r

)
− 4(a+ b) (D.1)

+ 4
√
a2 + b2 − 2a sinh−1

(
a

b

)
− 2b sinh−1

(
b

a

)]
(D.2)

The ring is not exactly a rectangle, but we can find two effective sides a and
b by forcing the effective rectangle to have the same surface and perimeter
of our ring. In this way we find:

• SQAC-WAu-1: a = 37.6µm and b = 2.485µm

• SQAC-WAu-2: a = 13.42µm and b = 2.578µm

We can note that the long side a is practically equal to the part of the res-
onator line included in the ring: 37.4µm for SQAC-WAu-1 and 12.9µm for
SQAC-WAu-2.

The radius of the wires composing the SQUID is in our case not uniform:
one long side a is a part of the Nb resonator, and has an approximate radius
rNb ∼ 1.35µm, while the other three sides of the rectangle are W wires with
an approximate radius of rW ∼ 50nm. To take this difference of thickness
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in account, we decompose the term 2a ln(2a/r) corresponding to two equal
wires in two:

2a ln
2a

r
←→ a ln

2a

rW
+ a ln

2a

rNb
(D.3)

The results of this calculation are: for SQAC-WAu-1, L = 36.5pH and for
SQAC-WAu-2 L = 15pH.

D.2 AC ring-resonator mutual inductance

To calculate the mutual inductance between the ring and the resonator line,
we used the expression:

M =
µ0

2π
a ln

(
2d+ b

2d− b

)
(D.4)

valid in the case of a ring isolated from the current line. a is the length of the
side facing the resonator line, b is the other side and d is the center-to-center
distance between the ring and the line.

If we let the distance between the ring and the resonator go to zero, and

Figure D.1: Schematic of the system SQUID-resonator for the mutual induc-
tance calculation.

if we take into account the contribution of the two lines, above (first term)
and below (second term) the ring, we obtain:

M =
µ0

2π
a ln

(
2b+ w

w

)
+
µ0

2π
a ln

(
2D − w

2D − w − 2b

)
(D.5)

where w is the line width and D is the distance between the two lines (see
Fig. D.1).
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sample L (pH) M (pH) L′ (pH)
SQAC-WAu-1 36.5 14.4 22.5
SQAC-WAu-2 15 5.3 5

Table D.1: Summary of samples SQAC-WAu-1 and SQAC-WAu-2 induc-
tances: self inductance L, mutual inductance M with the resonator line and
self inductance of the resonator part facing the ring L′.

We obtain for sample SQAC-WAu-1 M = 14.4 pH and for sample SQAC-
WAu-2 M = 5.3 pH.

The mutual inductance L′ of a SQUID directly connected to the resonator
is given by the self inductance of the resonator part included in the SQUID
(see sec. 5.2). For sample SQAC-WAu-1 we find L′ = 22.5pH and for sample
SQAC-WAu-2 is L′ = 5pH.
Because of the complicated shape of our ring, however, the uncertainty in
our estimation of the inductance is roughly 30%.
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Merci aussi aux membres de mon jury: Frank Hekking, le président, qui a
conduit avec humour la soutenance, Alfredo Levy-Yeyati et Hugues Pothier,
avec qui j’espère je pourrai continuer à discuter dans le futur.
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più difficile. E grazie per l’eccellente rinfresco che avete organizzato!
Grazie Fili di aver riascoltato 50 volte la mia presentazione senza (troppo)
protestare! Ricambierò!
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[19] Pascal Dubos. Transport électronique dans des nanojonctions supra-
conducteur - métal normal - supraconducteur. PhD thesis, Université
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[46] W. H. Press, S. A. Teukolsky, W. T. Wetterling, and B. P. Flannery.
Numerical Recipes in C - The Art of Scientific Computing. Cambridge
University Press, 1992.

[47] B. Reulet, M. Ramin, H. Bouchiat, and D. Mailly. Phys. Rev. Lett., 75,
124, 1995.



186 BIBLIOGRAPHY
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